В Закладки

Главная
Официальная
Новости
Курсовые работы
Дипломные проекты
Лекции и конспекты
Рефераты
Софт
Ссылки
Справочник Студента
Гостевая

Почта


Поиск по сайту:

          

















Распродажа товара клиновой анкер в Ленкомплект.ру
Лекции по строительным материалам.

Лекции по строительным материалам.

«Утверждаю»

Заведующий кафедрой

«Строительные материалы»

Проф. д.т.н., Коренькова С.Ф.

/___/________________/ 2005г

СТРОИТЕЛЬНОЕ МАТЕРИАЛОВЕДЕНИЕ

КОНСПЕКТ ЛЕКЦИЙ

Конспект составил

К.т.н., доцент кафедры

«Строительные материалы» __________/В.П.Петров/

Самара 2005

Лекция1. СТРОЕНИЕ АТОМА

Уважаемые слушатели мы приступаем к изучению курса «Строительное материаловедение». Лекции, которые будут прочитаны в течение данного семестра, помогут Вам разобраться в физико-химической сущности строения и свойств различных материалов. Вы узнаете, почему природные и искусственно созданные материалы имеют различные теплопроводность, механические и эксплуатационные свойства, как связаны эти свойства друг с другом, как и в каких пределах их можно изменять. Одновременно с изучением этих вопросов, вы более глубоко познакомитесь с физическими и химическими свойствами элементов, информация о которых заложена в периодической системе Д.И. Менделеева. Особо отмечу, что строение атомов химических элементов определяет структуру и энергию образуемых ими химических связей, которые, в свою очередь, лежат в основе всего комплекса свойств веществ и материалов. Лишь опираясь на понимание химического взаимодействия атомов, можно управлять процессами, происходящими в веществах, и получать заданные рабочие характеристик

и.

Однако более важной, чем изучение отдельных проблем, изложенных в лекциях, является предоставляемая вам возможность объединить основные положения физики, химии и прикладных научных направлений (теплофизики, механики) для комплексного понимания взаимодействия веществ и их свойств.

В лекциях главное внимание уделено фундаментальным основам материаловедения в связи с тем, что современное материаловедение направлено на получение материалов с заданными характеристиками и служит базой для наукоемких технологий XXI века.

Материалом называется вещество, обладающее необходимым комплексом свойств, для выполнения заданной функции отдельно или в совокупности с другими веществами.

Современное материаловедение полностью сложилось как наука во второй половине XX века, что было связано с быстрым возрастанием роли материалов в развитии техники, технологии и строительства. Создание принципиально новых материалов с заданными свойствами, а на их основе сложнейших конструкций позволило человечеству достичь за короткое время небывалых успехов в атомной и космической технике, электронике, информационных технологиях, строительстве и т.д. Можно считать, что материаловедение - это раздел научного знания, посвященный свойствам веществ и их направленному изменению с целью получения материалов с заранее заданными рабочими характеристиками. Он опирается на фундаментальную базу всех разделов физики, химии, механики и смежных дисциплин и включает теоретические основы современных наукоемких технологий получения, обработки и применения материалов. Основу материаловедения составляет знание о процессах, протекающих в материалах под воздействием различных факторов, об их влиянии на комплекс свойств мат

ериала, о способах контроля и управления ими. Поэтому материаловедение и технология материалов - взаимосвязанные разделы знания.

Курс материаловедения и технологии строительных материалов служит цели познания природы и свойств материалов, методов получения материалов с заданными характеристиками для наиболее эффективного использования в строительстве.

Основные задачи изучения курса:

- дать понимание физико-химической сущности явлений, происходящих в материалах при воздействии на них различных факторов в условиях производства и эксплуатации, и их влияния на свойства материалов;

- установить зависимость между химическим составом, строением и свойствами материалов;

- изучить теоретические основы и практику реализации различных способов получения и обработки материалов, обеспечивающих высокую надежность и долговечность строительных конструкций;

- дать знания об основных группах неметаллических материалов, их свойствах и областях применения.

В лекциях раскрываются:

- основы взаимодействия атомов и молекул, позволяющие в

дальнейшем объяснить влияние на свойства материала его химического состава и процессов направленной обработки;

- строение твердого тела, дефекты кристаллической структуры

и их роль в формировании свойств материалов;

- явления переноса тепла, массы и заряда, составляющие суть

любого технологического процесса;

- теоретические основы получения аморфных структур материалов;

- элементы механики упругой и пластической деформации и

разрушения материала, лежащие в основе формирования прочности и надежности современных строительных материалов и конструкций, а также

методы их испытаний;

Итак, задача современного материаловедения - получение материалов с заранее заданными свойствами. Свойства материалов определяются химическим составом и структурой, которые являются результатом получения материала и его дальнейшей обработки. Для разработки материалов и технологий необходимо знание физических и химических явлений и процессов, протекающих в материале на различных стадиях его получения, обработки и эксплуатации, их предсказание, описание и управление ими. Таким образом, знание теории необходимо для создания управляемых технологических процессов, результатом которых будет материал с четко определенными значениями рабочих свойств.

Физико-химические свойства вещества определяются электронным строением его атомов. Взаимодействия атомов связаны, в первую очередь, с взаимодействием их электронных оболочек. Поэтому при разработке материалов и процессов их получения необходимо четко представлять, как различные химические элементы отдают и принимают электроны, как изменение электронного состояния влияет на свойства элементов.

Давайте вспомним электронное строение атома.

1. Электронное строение атома

Около, двух с половиной тысяч лет древнегреческий философ Демокрит высказал мысль о том, что все окружающие нас тела состоят из мельчайших невидимых и неделимых частиц - атомов.

Из атомов, как из своеобразных кирпичиков собираются молекулы: из одинаковых атомов - молекулы простых, веществ, из атомов различного вида -молекулы сложных веществ.

Уже в конце девятнадцатого века наукой установлено, что атомы - частицы далеко не "неделимые", как представляла древняя философия, а, в свою очередь, состоят из ещё более мелких и, если так можно выразиться, ещё более простых частиц. В настоящее время с большей или меньшей достоверностью доказано существование уже около трех сотен элементарных частиц, входящих в состав атомов.

Для изучения химических превращений в большинстве случаев нам достаточно указать три частицы, входящие в атом: протон, электрон и нейтрон.

Протон представляет собой частицу массой условно принятой за единицу (1/12 массы атома углерода) и единичным положительным зарядом. Масса протона – 1,67252 х 10-27 кг

Электрон - частица с практически нулевой массой (в 1836 раз меньшей, чем у протона) и единичным отрицательным зарядом. Масса электрона – 9,1091х10-31 кг.

Нейтрон, представляет собой частицу с массой практически равной массе протона, но не имеющую заряда (нейтрален). Масса нейтрона – 1,67474 х 10-27 кг.

Современная наука представляет атом, устроенным приблизительно, также как утроена наша солнечная система: в центре атома находится ядро (солнце), вокруг которого на относительно большом расстоянии вращаются электроны (как планеты вокруг солнца). Эта "планетарная" модель атома, предложенная в 1911 году Эрнестом Резерфордом и в 1913 году уточнённая постулатами Бора, сохранила своё значение до настоящего времени.

В ядре, состоящим из протонов и нейтронов и занимающем очень малую часть объема атома, сосредоточена основная масса атома (масса электронов в химических расчётах атомных и молекулярных масс обычно не учитывается).

Число протонов в ядре определяет вид атома. Всего сейчас открыто более ста видов атомов, которые и представлены в Таблице элементов под номерами, соответствующими числу протонов в ядре.

Простейший атом содержит в ядре всего один протон: это атом водорода. Более сложный атом гелия имеет в ядре уже два протона, третий (литий) - три и т.д. Определённый вид атома называется элементом.

2. Спектры излучения и поглощения. Главное квантовое число

Согласно планетарной модели строения атома в центре атома находится ядро, содержащее протоны и нейтроны и сосредоточивающее, таким образом, фактически всю массу. Число протонов определяет вид атома а также его порядковый номер в периодической системе элементов Д.И. Менделеева (при записи элемента число протонов указывается перед буквенным символом элемента внизу).

Вокруг положительно заряженного ядра вращаются отрицательно заряженные электроны. Число электронов атома равно числу протонов в ядре, так что в целом атом электронейтрален.

Согласно такой Резерфордовской модели атома электрон, вращаясь вокруг ядра, должен излучать энергию и, с каждым оборотом теряя её, упасть на ядро. Это излучение должно быть непрерывным, т.е. спектр излучения атома должен быть сплошным. Представление о такого рода (сплошном) спектре может дать разложение солнечного света призмой на плавно переходящие друг в друга цвета радуги.

Однако уже в конце Х1Х века было экспериментально доказано, что спектры излучения атомов (в газообразном состоянии) не сплошные, а состоят из ряда чётко фиксированных полос ("полосатый" спектр).

Кроме того, данная простейшая модель не могла объяснить устойчивости (долгоживучести) атома: электрон, теряя энергию в форме электромагнитного излучения, должен был упасть на ядро (согласно простейшим расчётам в течении 10 секунд).

Эти два основных противоречия модели Резерфорда были устранены постулатами Бора (1913 год), согласно которым допускалось что:

1. В атоме имеются орбитали, находясь на которых, электрон не излучает и не поглощает энергию (так называемые стационарные орбиты).

2. Поглощение или выделение энергии происходит только как следствие перехода электронов с одной стационарной орбиты на другую стационарную. Поглощение - при переходе с ближайшей к ядру орбиты на более отдалённую; излучение – наоборот, при переходе с отдаленной на ближайшую.

Приравнивая математические выражения для центростремительной силы вращающегося вокруг ядра электрона силе электростатического притяжения электрона к ядру, и, учитывая уже известные положении квантовой механики о том, что энергия излучается не непрерывно, а определенными порциями (квантами), Бор рассчитал для простейшего атома (водорода) радиусы дозволенных такой теорией (стационарных) орбит и величины энергий электрона на каждой из таких электронных орбит (слоев). Радиус ближайшей к ядру стационарной орбиты водорода, согласно расчёта, оказался равным 0,053 нм, т.е. R = 0,053.10-9 м.

Стационарные орбиты расположены вокруг ядра слоями. Для обозначения номера слоя, в котором находится данный электрон, введено первое или главное квантовое число.

Общее буквенное обозначение главного квантового числа - n. Условно принято обозначать стационарные орбиты порядковыми числами от 1 до бесконечности. Таким образом, главное квантовое число обозначает номер электронного слоя, в котором находится интересующий нас электрон.

n = 1, 2, 3, ... ?.

Для обозначения главного квантового числа используют заглавные латинские буквы: K, L, M, N, O, P, Q.

Если мы говорим, что для данного электрона главное квантовое число равно единице (n = 1), то с физической точки зрения это равносильно утверждению: данный, электрон находится в первом (наиболее близком к ядру) электронном слое.

Естественно, чем дальше тот или иной электронный слой от ядра (больше значение n), тем больше размер (радиус) этого слоя.

Радиусы стационарных орбит атомов оказались пропорциональны квадрату главного квантового числа (номера слоя):

R = An2

Принимая во внимание, что электроны в столь маленьком пространстве движутся с огромной линейной скоростью (около 260 тыс. км/с), близкой к скорости света (300 тыс. км/с), электронный слой можно представить себе в форме электронного облака, то есть размытого электроотрицательного поля.

Согласно постулатам Н. Бора электрон, вращаясь по стационарным орбитам, не излучает и не поглощает энергии и только переход его с одной орбиты на другую вызывает изменение его энергии, т.е. излучение или поглощение. Переход из отдалённого слоя в более близкий к ядру слой вызывает излучение энергии, напротив, получив энергию из вне (поглотив), электрон приобретает возможность перескочить на более удалённый уровень.

Орбитальное квантовое число. Физический смысл, числовое и буквенное обозначения

Более детальное рассмотрение линий спектра показало, что большинство их мультиплётно, то есть они состоят из нескольких близко друг к другу расположенных линий. Это наводит на мысль, что квантовые уровни не однородны, в пределах одного стационарного уровня может быть несколько близких по энергии стационарных подуровней. Для обозначений этих подуровней введено второе квантовое число, которое иногда называют также "побочное", а чаще всего "орбитальное".

Общее буквенное обозначение этих подуровней (другими словами, орбитальных квантовых чисел) -l (малая латинская буква л).

Число таких возможных подуровней зависит от номера уровня, т.е. от главного квантового числа и определяется по формуле:

l = 0, 1, 2, 3, ... n-1.

Другими словами, подуровни условно обозначены также, как и уровни, целыми числами, но начиная с нуля. Их число в каждом уровне зависит от номера уровня.

Для обозначения подуровней чаще используются не цифры, а малые буквы латинского алфавита:

l = s, p, d, f,...

Установлено, что подуровни различаются между собой не только энергией находящихся на них электронов, но и формой орбитали (электронного облака). Так подуровень s имеет шаровую форму электронного облака, подуровень р - форму, напоминающую гантель, формы d электронных облаков получили названия "розетка".

Магнитное и спиновое квантовые числа

Установлено, что при помещении атома во внешнее магнитное или электрическое поле спектры атомов становятся еще более мультиплётными. С физической точки зрения это означает, что различные электронные облака находящиеся даже на одном подуровне, по разному реагируют на внешнее магнитное поле. Для обозначения этих подподуровней введено третье, магнитное квантовое число тl, принимающее значения всех целых чисел от -l через 0 до +l.

тl = -l,...-2,-1,0,+1.+2,...,+ l

То есть: магнитное квантовое число (тl) показывает реакцию орбит на внешнее магнитное или электрическое поле, зависит, от орбитального квантового числа и обозначается целыми числами от -l до +l.

Электрон помимо движения "вокруг ядра" вращается и вокруг собственной оси. Для обозначения направления этого вращения введено четвёртое квантовое число – cnuнoвoe (ms). Собственный момент вращения -(спин) имеет два значения, условно обозначенные как +1/2 и -1/2.

Упрощенно иногда указывают: по часовой или против часовой стрелки; или изображают в виде стрелки, направленной остриём вверх или вниз.

Следует помнить, что обозначения и числовые значения всем квантовым числам даны условно. Все квантовые числа являются энергетическими характеристиками электрона, т.е. условным образом указывают на различия в энергетическом состоянии электрона. В целях более удобного восприятия мы и придаём квантовым числам определенный физический смысл.

Периодический закон и электронное строение атома

Все вещества состоят из взаимодействующих химических элементов. Минимальной частицей химического элемента является атом, состоящий из ядра и окружающих его электронов. Периодическая система химических элементов Д.И. Менделеева устанавливает взаимосвязь периодичности свойств химических элементов с электронным строением атома. Важнейшее значение периодического закона заключается в том, что на его основе осуществляется осмысление и обобщение практически необъятного фактического материала о строении и свойствах простых и сложных веществ. На плакате 1 представлен вариант длинной формы периодической системы химических элементов Д.И. Менделеева. В ячейках таблицы приводятся порядковый номер химического элемента, его обозначение, относительная атомная масса и конфигурация внешнего электронного уровня.

Таблица.2 Обозначение уровней электронов в атоме

Уровень Главное квантовое число п К I L 2 М 3 N 4 О 5 Р 6 Q 7

Горизонтальные ряды таблицы Менделеева называются периодами. Номер периода соответствует главному квантовому числу п. Периоды определяют заполнение электронных уровней (слоев, оболочек) в атоме (табл. 2). Столбцы соответствуют группам и подгруппам. Группы обозначены римскими цифрами, а подгруппы буквами а и b.

Группы соответствуют последовательности заполнения электронных оболочек в каждом периоде согласно орбитальному (азимутальному - l), магнитному (тl) и спиновому (ms) квантовым числам. Подгруппы разделяют заполнение s-, р- и d- подуровней (орбиталей) (табл. 3).

Главное (радиальное) квантовое число п характеризует дискретность изменения энергии и расстояния электрона (радиуса орбиты) от атома, п = 1, 2, 3, 4, 5, 6, 7.

Орбитальное (азимутальное) квантовое число l, или квантовое число углового момента, определяет дискретность изменения величины орбитального углового момента вращения электрона вокруг ядра атома, l = 0, 1, 2, 3, ..., (n - 1).

Таблица3 Обозначение подуровней электронов в атоме

Подуровень Орбитальное квантовое число l s

р

d

f 0

1

2

3

Магнитное квантовое число т определяет дискретность пространственной ориентации орбитального углового момента электрона, а следовательно, и атомного магнитного момента, тl = - l, ..., -3, -2, -1,0, 1,2, 3, ..., l.

Спиновое квантовое число ms определяет величину спинового (вращение вокруг собственной оси) углового момента электрона, ms = -1/2, 1/2. Знак «минус» для квантовых чисел т и ms означает существование положительных и отрицательных проекций углового момента на ось вращения.

Поскольку каждый отдельно взятый атом - электрически нейтральная система, то числу электронов в атоме химического элемента соответствует эквивалентное число протонов в атомном ядре, а, следовательно, пропорциональное значение электрического заряда ядра. Номер химического элемента в периодической системе соответствует электрическому заряду его ядра, выраженному в единицах заряда электрона е = 1,60217733 . 10-19 Кл. У атома с номером Z положительный заряд ядра равен +Z.e. Этот заряд несут Z протонов, каждый из которых имеет такую же массу, как ядро атома водорода и заряд +е. Увеличение числа электронов, а, следовательно, и протонов в атоме приводит к росту атомной массы. Однако одному и тому же химическому элементу могут соответствовать атомы с разной величиной массы - изотопы. Это связано с различным содержанием нейтронов в ядре химического элемента.

Примечание. Под изолированной системой понимается система, совершенно не взаимодействующая с окружающей средой.

Любая изолированная система стремится занять состояние с минимальной энергией - основное состояние. Соответственно ведут себя и электроны в атоме. Распределение электронов по орбиталям (по энергетическим уровням) определяется принципом исключения Паули, который гласит, что в атоме не может быть двух электронов, у которых все четыре квантовых числа одинаковы.

Пример:

По периодической таблице легко определить электронную конфигурацию атома каждого элемента, например, для лития Is22s1, углерода Is22s22p2, неона Is22s22p6, кремния Is22s22p63s23p2, ванадия Is22s22p63s23p63d34s2, урана Is22s22p63s23p63d104s24p64d104f145s25p65d105f36s26p66d17s2.

Периодичность свойств химических элементов

Периодичность заполнения электронных оболочек в соответствии с условиями квантования приводит к сходству свойств химических элементов. Выделяют следующие классы (см. табл. I): благородные газы - элементы с полностью заполненными электронными оболочками (Не, Ne, Ar, Kr, Xe, Rn); типичные элементы - элементы, у которых все электронные слои атомов (см. табл. 1, 2, 3), кроме внешнего, заполнены (s- и р-элементы); переходные элементы - элементы, имеющие два незаполненных внешних электронных слоя, в том числе подуровни (п-l)d (d-элементы); внутрирядные переходные элементы (редкоземельные) - элементы, имеющие три незаполненных внешних электронных слоя, в том числе подуровни (п - 2)f (f-элементы). Таким образом, полнота заполнения электронами внешних (валентных) орбиталей имеет важнейшее значение и определяет свойства элементов.

Примечание. Валентными электронами называются электроны внешних электронных орбиталей атома. Число валентных электронов, отдаваемых атомом для образования связей, определяет величину его валентности в конкретном случае взаимодействия.

Рост числа электронов, с одной стороны, и соответствующее экранирование электрического заряда ядра (заряд ядра становится эффективным), с другой стороны, приводят к периодическому изменению атомных радиусов химических элементов, а соответственно, и атомных объемов. Атомный объем имеет существенное значение при взаимодействии атомов различных химических элементов, особенно в твердом состоянии (при образовании твердых растворов).

В процессах межатомного взаимодействия, в частности, в технологии строительных материалов, существенную роль играют окислительно-восстановительные способности элементов — склонность отдавать или принимать электроны. Естественно, чем меньше энергия (потенциал) ионизации, тем легче атом отдает электроны и тем самым может являться более сильным восстановителем. Чем легче атом химического элемента присоединяет электроны, чем выше его сродство к электрону, тем более сильным окислителем он может являться. Понятия окислителя и восстановителя - это понятия относительные и очевидны лишь при образовании чисто ионной связи.

Примечание. Ионы - одноатомные или многоатомные частицы, несущие электрический заряд, например Н+, Li+, Al3+, O22-, SO42-. Положительно заряженные ионы называют катионами, а отрицательно заряженные - анионами.

При взаимодействии атомов разных химических элементов с образованием гетерополярной ковалентной связи полезно использовать понятие электроотрщателъности, которой также свойственна периодичность изменения в зависимости от атомного номера химического элемента.

Нужно помнить, что не только свойства свободных атомов, но и свойства простых веществ, которые они составляют, подчиняются периодической закономерности.

3. Атомные радиусы химических элементов

Понятие атомного радиуса достаточно относительно, так как полностью определяется тем состоянием, в котором находится данный атом: свободном, молекулярном, жидком, кристаллическом, причем надо также учитывать, например, тип химической связи и кристаллической структуры. Радиус связанного атома можно считать либо ионным, либо атомным.

Орбитальные атомные радиусы химических элементов, по Веберу и Кромеру представлены на плакате 2.

В среднем атомный радиус возрастает с ростом порядкового номера элемента (заряда ядра), особенно с переходом к новому периоду. Однако внутри каждого периода с ростом числа электронов величина радиуса падает, что обусловлено ростом заряда атомного ядра, увеличивающую силу притяжения электронов на данной орбите.

При заполнении р-подуровня подобная тенденция слабее, хотя также имеет место. Незначительные искажения, обнаруживаемые для радиусов переходных элементов, обусловлены особенностями заполнения электронами d-орбитали.

4. Энергия ионизации

Энергия ионизации характеризует величину силы связи электрона с ядром, по которой можно судить о стабильности той или иной электронной конфигурации, а также, частично, о легкости или трудностях передачи электрона от одного атома к другому при образовании чисто ионной химической связи в окислительно-восстановительных процессах.

Первая энергия (первый потенциал) ионизации I1 - наименьшее количество энергии, которое необходимо для удаления электрона от свободного атома в его низшем (основном) энергетическом состоянии. Вторая I2 , третья I3 (и т.д.) энергии ионизации представляют собой энергии, необходимые для удаления наиболее слабо связанных электронов от однократно, двукратно (и т.д.) положительно заряженных ионов в их основном состоянии. Очевидно, что I1 < I2 < I3< ... < Iп , где п - общее число электронов в атоме. На энергию ионизации наиболее существенное влияние оказывают следующие факторы:

- эффективный заряд ядра;

- расстояние от электрона до ядра (точнее, радиус максимума

электронной плотности);

- глубина проникновения электрона в облака зарядов внутренних электронов.

Периодичность энергии ионизации представлена на плакате 2.

Глубина проникновения электронов в нижеследующие слои меняется в последовательности s ? р ? d ? f, т.е. наиболее глубоко проникают s-электроны. В результате прочность связи электронов с ядром растет в той же последовательности, а степень экранирования ядра - в обратной. Увеличение энергии связи электронов с ядрами приводит к сжатию электронных оболочек.

Отметим, что по мере увеличения атомного номера Z нижеследующие электронные оболочки снижают энергию связи внешних электронов с ядрами. В то же время энергия связи электронов, заполняющих внешние р-подуровни, растет по мере их накопления с ростом Z и достигает максимума у благородных газов (Не, Ne, Ar, Кг, Хе и Rn).

5. Cродство к электрону

Почти все нейтральные атомы обладают способностью присоединять электрон:

Эл(г) + е(г) - ? Эл (г) -,

где Эл - химический элемент; е- - электрон; (г) - газ.

Энергия, которая выделяется при присоединении электрона к свободному нейтральному газовому атому в его основном состоянии с образованием свободного отрицательно заряженного иона, называется сродством к электрону. Следует различать первую энергию сродства, вторую, третью и т.д., хотя добавление более одного электрона всегда требует затраты энергии.

Сродство к электрону, как и потенциал ионизации, определяет способность данного элемента к взаимодействию с другими и с этой точки зрения является характеристикой межатомной связи. Естественно, что и сродство к электрону, и потенциал ионизации определяются электронной конфигурацией атома и, соответственно, положением элемента в периодической таблице.

Средние численные значения сродства к электрону, полученные экспериментально для некоторых элементов, приведены на плакате 3. Максимальным сродством к электрону обладают элементы VI и VII групп. Нулевое сродство к электрону имеют благородные газы. Практически нулевым сродством обладают щелочноземельные металлы, отличающиеся заполненным внешним s -подуровнем. Элементы с наполовину заполненным р-подуровнем обладают пониженным сродством к электрону.

6. Электроотрицательность

Понятие электроотрицательности атомов как количественную характеристику способности атома в молекуле притягивать к себе электроны впервые ввел Л. Полинг в 1932 г.

Однако величина электроотрицательности не является строгой константой элемента, поскольку зависит от степени и знака его ионизации при образовании связи, от конфигурации орбитали и т.п. В настоящее время существует несколько шкал электроотрицательности, которые достаточно существенно по значениям отличаются друг от друга. В то же время большинство различных шкал могут быть пересчитаны друг в друга, что говорит об их взаимосвязи и внутренней согласованности. Понятие электроотрицательности очень полезно при объяснении и понимании ионности и полярности связи, энергии диссоциации, силовой постоянной и др.

А.Л. Оллред и Е. Рохоу предложили определение электроотрицательности как силы, действующей на электрон, удаленный от ядра на расстояние ковалентного радиуса. Это определение наилучшим образом отражает химические свойства элементов:

ХА = e2 Zэфф /r2ков,

где ХА - электроотрицательность; Zэфф = Z – а - эффективный заряд атома; а - постоянная экранирования, определяемая для каждого элемента, исходя из его полной электронной конфигурации; е - заряд электрона; rков - ковалентный радиус. Значения электроотрицательности, вычисленные по данной формуле, приведены на плакате 4.

Если два или более атома с различными электроотрицательностями соединяются, то в молекуле их электроотрицательности выравниваются и приобретают некоторое промежуточное значение, равное среднему геометрическому значению электроотрицательностей атомов до их соединения в молекулу. Это называется принципом выравнивания электроотрицательностей.

Пользуясь данными плаката 4, можно оценивать способность атомов притягивать электроны, т.е. проявлять свойство электроотрицательности, если учитывать конкретные особенности образования межатомной связи. В частности, используя значения электроотрицательности, можно грубо оценивать ионную составляющую связи в соединениях (как разность электроотрицательностей элементов, составляющих бинарное соединение), что позволяет анализировать изменение физико-химических свойств в рядах соединений-аналогов при последовательных анионных и катионных замещениях компонентов.

Лекция 2. ХИМИЧЕСКАЯ СВЯЗЬ И СТРОЕНИЕ МОЛЕКУЛ

Атомы большинства элементов могут взаимодействовать между собой или атомами других элементов, образуя молекулярные частицы. Экспериментальные и теоретические исследования показывают, что при этом получается система частиц, состоящая из атомных ядер и окружающих их внутренних и валентных электронов. Строго говоря, простейшими структурными составляющими химических веществ являются не атомы, а ядра атомов и электроны.

В дальнейшем мы под МОЛЕКУЛЯРНОЙ ЧАСТИЦЕЙ будем понимать наименьшую совокупность атомных частиц, химически связанных в определенном порядке, способную к самостоятельному существованию и обладающую определенной структурой.

1. Краткая история развития представлений о химической связи

Какова природа сил, связывающих атомы в молекуле? Ответ на этот вопрос искали с момента появления атомистической гипотезы строения вещества. Вначале считали, что атомы механически соединяются между собой с помощью крючков и петель. Затем возникла идея, что связь между атомами осуществляется силами всемирного тяготения. В начале девятнадцатого века в трудах Г. Деви и Йёнса Берцелиуса была разработана электрохимическая теория, суть которой сводилась к тому, что химически взаимодействующие частицы при контакте приобретают противоположные электрические заряды, которые обусловливают связь. Однако эта теория не смогла объяснить существование молекул, образованных одинаковыми атомами (Н2, F2 и т. д.).

Дальнейшее развитие теории химической связи стало возможным после открытия электрона. Первым высказал электронную концепцию Дж. Томсон в 1907 году. Он предположил наличие в атомах определенную устойчивость электронных конфигураций, которые могут реализоваться при потере или присоединении к ним электронов.

Эрнестом Розерфордом и Нильсом Бором была создана теория химической связи, осуществляемая путем перераспределения электронов между атомами. Основы этой теории были представлены в работах Вальтера Косселя, Джильберта Льюиса, Ирвина Ленгмюра.

Коссель предложил (1915 г.) статическую электронную теорию строения атомов и молекул, суть которой в следующем:

1. Атомы благородных газов обладают особенно устойчивой двух- или восьмиэлектронной внешней оболочкой.

2. Атомы других элементов во внешней оболочке имеют число электронов меньше двух или восьми. Их электронные оболочки менее устойчивы.

3. Образование молекул происходит вследствие передачи определенного числа электронов от атома одного элемента (металла) к атому другого элемента (неметалла).

В результате такого перераспределения электронов каждый атом должен иметь внешнюю оболочку, аналогичную устойчивой электронной оболочке благородного газа. При этом атом металла приобретает положительный, а атом неметалла — отрицательный заряд. Соединение между ними обусловливается в соответствии с законом Кулона силами электростатического притяжения. Такая химическая связь называется ИОННОЙ.

Эта теория не могла объяснить природу связи между одинаковыми атомами. Кроме того, последующие исследования показали, что практически никогда электроны не переходят полностью от одного атома к другому.

Примерно в то же время (1916 г.) Льюис предпринял попытку объяснить механизм образования химической связи между любыми (в том числе и одинаковыми) атомами. Затем теория Льюиса была развита Ленгмюром.

Теория Льюиса-Ленгмюра также исходит из особой стабильности двух- или восьмиэлектронных внешних оболочек атомов и стремления атомов, участвующих в образовании молекулы, иметь такие оболочки. Химическая связь в данном случае осуществляется посредством образования общей электронной пары, в которую каждый атом дает по одному электрону из своей внешней оболочки. Такую химическую связь Ленгмюр назвал КОВАЛЕНТНОЙ, т. е. совместно действующей. Молекула Фтора, например, по этой теории образуется при обобществлении по одному электрону от каждого атома. В этом случае образуется одна общая электронная пара, связывающая атомы по схеме:

. . . .

: F : F :

. . . .

В схеме символ F условно обозначает ядро атома, окруженное электронами, кроме внешних; они на схеме показаны точками.

Теории Льюиса-Ленгмюра и Косселя были значительным вкладом в развитие электронных представлений о химической связи. Однако опыт показал, что устойчивой может быть не только двух- или восьмиэлектронная внешняя оболочка, но и оболочки, содержащие 6, 10, 12 и 16 электронов, как например, в соединениях СО, А1С13, РС15, SF6, OsF8. Из сказанного видна искусственность представления об особой устойчивости только двух- или восьмиэлектронной конфигурации. Рассмотренные теории носили качественный характер и не устанавливали механизма образования химической связи, не позволяли рассчитывать ее количественные характеристики.

2. Квантово-механическое рассмотрение химической связи.

2.1. Ковалентная связь

Получить ответ, удовлетворительно объясняющий природу и механизм химической связи, оказалось возможным только после появления квантово-механической теории строения атома, так как при образовании связи проявляются специфические для микрообъектов свойства электронов.

С точки зрения квантовой механики при образовании химической связи между атомами их электронные орбитали перекрываются. В результате в межъядерной области создается повышенная электронная плотность по сравнению с электронной плотностью в изолированных атомах, которая как бы стягивает ядра в единую устойчивую систему (рис.1, а). В силу особенностей электронных состояний между ядрами может происходить не повышение электронной плотности, а, наоборот, уменьшение ее до нуля. В этом случае химическая связь не образуется (рис. 1, б). Причины устойчивости многоатомной частицы заключаются в понижении энергии ее образования. Рассмотрим, например, изменение энергии при сближении двух атомов водорода, находящихся на бесконечно большом расстоянии (r = ?) друг от друга. Потенциальную энергию Е при г = ? примем равной нулю.

Рис.1 Взаимодействие между атомами водорода, приводящее к образованию связи (а) и не приводящее к образованию связи (б)

Система состоит из двух протонов и двух электронов. Между частицами возникает два типа сил: силы отталкивания между электронами двух атомов и протонами атомов и силы притяжения между протонами и электронами.

Если спины электронов антипараллельны, то при сближении атомов происходит уменьшение потенциальной энергии системы и при r= r0 силы притяжения становятся равными силам отталкивания, а энергия системы принимает свое минимальное значение. При дальнейшем сближении атомов силы отталкивания будут больше сил притяжения и потенциальная энергия системы начинает резко возрастать. Графическая зависимость потенциальной энергии системы из двух атомов водорода от межъядерного расстояния, называемая ПОТЕНЦИАЛЬНОЙ КРИВОЙ, представлена на рис.2.

Таким образом, при сближении двух атомов водорода с электронами, обладающими антипараллельными спинами, на расстояние r0 система имеет минимальную энергию и, следовательно, в этом случае образуется устойчивая химическая связь (рис. 2, а).

В случае, когда спины параллельны, квантово-механические расчеты по уравнению Шредингера показывают, что потенциальная энергия системы при любом расстоянии между сближающимися атомами больше, чем сумма энергий двух отдельных атомов и образование химической связи невозможно. Потенциальная кривая в данном случае выглядит иначе (рис. 2, б).

В заключение отметим, что в рамках этой модели ядро атома не закрепляется неподвижно в точке О, а постоянно колеблется. В реальной же двухъядерной молекуле колеблются оба ядра, достигая определенных предельных состояний. Молекулы все время как бы растягиваются и сжимаются. При этом го — среднее расстояние между ядрами, а Еmin — минимальная энергия молекулы с учетом колебания ядер.

Рис 2. потенциальная кривая

Количественные характеристики химической связи

Химическая связь характеризуется рядом параметров. Чаще всего говорят об ее энергии и длине. Если молекула состоит из трех и более атомов, то к перечисленным параметрам добавляют еще один — валентные углы.

ЭНЕРГИЕЙ СВЯЗИ называют ту энергию, которую необходимо затратить для ее разрыва. При этом молекула должна находиться в основном (невозбужденном) состоянии и при 0оК. Эта величина определяет прочность связи. Чем больше энергия, затрачиваемая на разрыв связи, тем прочнее связь. Единица измерения энергии связи — кДж/моль. Например, энергия связи Н—Н в молекуле водорода равна 436 кДж/моль. Если в молекуле несколько одинаковых связей, то, очевидно, для разрушения каждой следующей потребуется различная энергия и в таком случае говорят о средней энергии связи.

Величина энергии химических связей в большинстве соединений колеблется в пределах 100-1000 кДж/моль. Энергия связи в ряду однотипных молекул постепенно изменяется. Например, энергия связи Н-Г в ряду гало-геноводородов HF, HC1, HBr, HI уменьшается с 565,7 кДж/моль у HF, до 294,7 кДж/моль у HI. Зная энергию связей в молекуле, можно судить также о ее реакционной способности и производить различные термохимические расчеты.

ДЛИНОЙ СВЯЗИ называют среднее расстояние между ядрами, отвечающее минимуму энергии системы. На рис. 2. длина связи между атомами водорода измеряется отрезком гo. Современными методами исследования структуры веществ можно определить длины связей с точностью, которую допускает принцип неопределенности.

В ряду аналогичных по составу молекул длины связей также изменяются закономерно. Например, в ряду HF, НС1, HBr, HI длина связи увеличивается с возрастанием размера атома и соответственно равна 0,091; 0,127; 0,141; 0,160 нм. В молекулах, близких по химической природе, одного гомологического ряда, длины связей между ядрами элементов мало различаются и могут считаться практически постоянными (например, длины связей С - С в предельных углеводородах и т. д.).

Кроме того, на длину связи влияет ее кратность, которая определяется числом электронных пар, связывающих два атома. С увеличением кратности связей происходит их упрочнение, межъядерные расстояния уменьшаются. Так, длина связи С—С равна 0,154 нм, С = С - 0,135 нм и С ? С - 0,121 нм.

ВАЛЕНТНЫЕ УГЛЫ. Это углы между связями в молекуле. Их схематически можно представить как углы между прямыми линиями, соединяющими ядра атомов в молекуле. Эти воображаемые прямые, проведенные через два ядра, называют линиями связи. Величины валентных углов зависят от природы атомов и характера связи. Простые двухатомные молекулы всегда имеют линейную структуру. Трехатомные и более сложные молекулы могут обладать различными конфигурациями. Например, в молекуле воды угол между линиями связи Н—О равен 104,5°, а в сходной молекуле сероводорода валентный угол между связями составляет 92°.

Все рассмотренные параметры химической связи можно определить экспериментально при исследовании молекулярных спектров веществ. Их также, в большинстве случаев, можно найти в справочнике.

Для описания и расчета ковалентной связи широко используются два метода — метод валентных связей (МВС) и метод молекулярных орбиталей (ММО).

Метод валентных связей

Основные положения метода валентных связей, базирующиеся на квантово-механической теории строения атома, были разработаны Вальтером Гейтлером и Фритцем Лондоном в 1928 году. В последующем значительный вклад в развитие этого метода внесли Лайнус Полинг и Джон Слейтер. С точки зрения этого метода:

1. В образовании связи участвуют только электроны внешней электронной оболочки атома (валентные электроны).

2. Химическая связь образуется двумя валентными электронами различных атомов с антипараллельными спинами. При этом происходит перекрывание электронных орбиталей и между атомами появляется область с повышенной электронной плотностью, обусловливающая связь между ядрами атомов. Таким образом, в основе МВС лежит образование двухэлектронной, двухцентровой связи.

3. Химическая связь осуществляется в том направлении, в котором обеспечивается наибольшее перекрывание атомных орбиталей.

4. Из нескольких связей данного атома наиболее прочной будет связь, которая получилась в результате наибольшего перекрывания атомных орбиталей.

5. При образовании молекул электронная структура (кроме внешней электронной оболочки) и химическая индивидуальность каждого атома в основном сохраняются.

Известны два механизма образования общих электронных пар: обменный и донорно-акцепторный.

ОБМЕННЫЙ МЕХАНИЗМ объясняет образование ковалентной химической связи участием в ней двух электронов с антипараллельными спинами (по одному от каждого атома).

ДОНОРНО-АКЦЕПТОРНЫЙ МЕХАНИЗМ предполагает образование ковалентной химической связи за счет неподеленной пары (не участвовавшей ранее в образовании связи) одного из связывающихся атомов и вакантной орбитали другого атома. Например, при сближении молекулы аммиака и иона водорода неподеленная пара электронов атома азота занимает вакантную орбиталь иона водорода. Это приводит к образованию общей электронной пары и, следовательно, к образованию химической связи между ними. Первый атом называют ДОНОРОМ, второй — АКЦЕПТОРОМ. Вещества, в которых есть химические связи донорно-акцепторного происхождения, широко распространены среди неорганических соединений. Большая часть таких соединений относится к так называемым комплексным соединениям.

Метод молекулярных орбиталей (ММО)

Метод валентных связей в большинстве случаев позволяет получать правдивую информацию о структуре и свойствах различных молекул и ионов. Однако имеется ряд экспериментальных фактов, которые не могут быть объяснены на основании этого метода. Так, не удается объяснить магнитные свойства ряда веществ (О2, В2 и др.) и существование молекул с нечетным числом электронов (NО и др.).

Эти и другие факты способствовали созданию иного квантово-механического метода описания ковалентной химической связи — МЕТОДА МОЛЕКУЛЯРНЫХ ОРБИТАЛЕЙ (ММО). Основы ММО разработаны Робертом Малликеном и Фридрихом Хундом (1928-1930 гг.).

В методе МО подход к рассмотрению структуры молекулы близок к тому, которым мы пользовались при рассмотрении строения атома. Метод основан на следующих положениях:

1. Молекула рассматривается как единая система ядер и электронов, а не как совокупность атомов, сохраняющих некоторую индивидуальность. Она образуется, если энергия такой системы ниже, чем энергия исходных атомов.

2. Подобно тому как электроны в атомах располагаются на атомных орбиталях (АО), общие электроны в молекуле располагаются на молекулярных орбиталях (МО). Совокупность молекулярных орбиталей, занятых электронами, определяет электронную конфигурацию молекулы.

3. Существует несколько приближенных методов расчета молекулярных орбиталей. Наиболее простой называется методом линейной комбинации атомных орбиталей (МЛК АО). С точки зрения МЛК АО молекулярную орбиталь рассматривают как линейную комбинациюсоответствующих атомных орбиталеи в изолированных атомах, ядра которых входят в состав молекулы.

4. В образовании молекулярной орбитали участвуют только те АО, которые имеют близкую по величине энергию и приблизительно одинаковую симметрию относительно оси связи.

5. При взаимодействии двух атомных орбиталеи в результате их линейной комбинации образуются две молекулярных орбитали с большей и меньшей энергиями, чемэнергия исходных АО. В результате сложения АО образуется МО с повышенной межъядерной электронной плотностью (меньшей энергией). Такую орбиталь называютсвязывающей. В случае вычитания АО образуется МО с пониженной межъядерной электронной плотностью

(большей энергией), называемая разрыхляющей. Сумма энергии образовавшихся МО в первом приближении равна сумме энергий АО, из которых они образовались.

6. Число всех образовавшихся МО равно сумме АО исходных атомов. При этом число связывающих и разрыхляющих МО одинаково у гомоядерных молекул (содержащих одинаковые ядра) или равно числу участвующих в

образовании связи АО того атома, у которого их меньше.

7. Молекулярные орбитали по аналогии с атомными обозначаются греческими буквами s, p, d. Каждая МОхарактеризуется набором трех квантовых чисел. В соответствии с принципом Паули на молекулярной орбитали, как и на атомной, не может быть больше двух электронов.

8. Все имеющиеся в молекуле электроны распределяются по МО с соблюдением тех же принципов и правил, что и при заполнении электронами орбиталеи в отдельных атомах (принцип наименьшей энергии, принцип Паули, правило Хунда). Электрон, находящийся на связывающей орбитали, увеличивает энергию связи, а электрон, находящийся на разрыхляющей орбитали, ее уменьшает.

9. Стабильность молекулы определяется разностью числа связывающих и разрыхляющих электронов. Если эта разность равна нулю, частица не образуется. Для того, чтобы можно было сопоставить число связей по МВС и

ММО, используют понятие порядок связи (кратность). Порядок связи (N) равен разности между числом электронов, находящихся на связывающих орбиталях, и числомэлектронов на разрыхляющих орбиталях, деленной на 2.

Он может принимать целые или дробные положительныезначения.

Сравнение методов валентных связей и молекулярных орбиталей

Вначале отметим, что методы валентных связей и молекулярных орбиталей являются приближенными. Каждый метод имеет свои преимущества и недостатки.

Метод МО позволяет описывать и прогнозировать свойства молекулы, зависящие от состояния в них отдельных электронов, такие как устойчивость и неустойчивость. Так, например, с точки зрения ММО, устойчив молекулярный ион Щ и, наоборот, неустойчивы Не2, Ве2. С позиций метода ВС это необъяснимо.

В рамках метода МО хорошо объясняются и прогнозируются магнитные свойства молекул, также необъяснимые с позиций МВС. Однако в рассмотренном простейшем варианте ММО не способен передавать насыщаемость ко-валентной связи (т. е. состав молекулы). Для МВС этот недостаток менее характерен. Расчет геометрической структуры и определение важнейших параметров молекулы с помощью ММО является трудной математической задачей, для решения которой необходимы мощные ЭВМ.

Из сказанного выше можно сделать вывод о том, что наиболее общим и последовательным методом для описания строения молекул является метод молекулярных орбиталей. Тем не менее, метод валентных связей дает возможность, основываясь на небольшом числе предположений, связывать между собой в стройную систему важнейшие опытные данные, и применение этого метода во многих случаях более наглядно и вполне оправдано. Спор о том, какой из методов вернее, беспредметен. Правильнее считать, что они взаимно дополняют друг друга.

Свойства ковалентной связи

Ковалентная связь обладает рядом важных свойств. К их числу относятся: насыщаемость и направленность.

НАСЫЩАЕМОСТЬ — характерное свойство ковалентной связи. Она проявляется в способности атомов образовывать ограниченное число ковалентных связей. Это связано с тем, что одна орбиталь атома может принимать участие в образовании только одной ковалентной химической связи. Данное свойство определяет состав молекулярных химических соединений. Так, при взаимодействии атомов водорода образуется молекула Н2, а не Н3. С точки зрения МВС третий атом водорода не может присоединиться, так как спин его электрона окажется параллельным спину одного из спаренных электронов в молекуле. Способность к образованию того или иного числа ковалентных связей у атомов различных элементов ограничивается получением максимального числа неспаренных валентных электронов.

НАПРАВЛЕННОСТЬ — свойство ковалентной связи, определяющее геометрическую структуру молекулы. Причина направленности связи заключается в том, что перекрывание электронных орбиталей возможно только при их определенной взаимной ориентации, обеспечивающей наибольшую электронную плотность в области их перекрывания. В этом случае образуется наиболее прочная химическая связь.

Полярность связей и молекул

В молекулах положительные заряды ядер скомпенсированы отрицательными зарядами электронов. Однако положительные и отрицательные заряды могут быть пространственно разделены. Предположим, что молекула состоит из атомов разных элементов (НС1, СО и т. д.). В этом случае электроны смещены к атому с большей электроотрицательностью и центры тяжести положительных и отрицательных зарядов не совпадают, образуется электрический диполь — система из двух равных по величине и противоположных по знаку зарядов q, находящихся на расстоянии l, называемом длиной диполя. Длина диполя — векторная величина. Ее направление условно принято от отрицательного заряда к положительному. Такие молекулы называют полярными молекулами или диполями.

Полярность молекулы тем больше, чем больше абсолютная величина заряда и длина диполя. Мерой полярности служит произведение q . l, называемое электрическим моментом диполя ?: ? = q . l.

Единицей измерения ? служит Дебай (Д). 1 Д = 3,3 . 10 -30 Кл . м.

В молекулах, состоящих из двух одинаковых атомов ? = 0. Их называют неполярными. Если такая частица попадает в электрическое поле, то в ней под действием поля произойдет поляризация — смещение центров тяжести положительных и отрицательных зарядов. В частице возникает электрический момент диполя, называемый наведенным диполем.

Дипольный момент двухатомной молекулы АВ можно отождествить с дипольным моментом связи А—В в ней. Если общая электронная пара смещена к одному из атомов, то электрический момент диполя связи не равен нулю. Связь в этом случае называется полярной ковалентной связью. Если электронная пара симметрично расположена относительно атомов, то связь называется неполярной.

В многоатомной молекуле определенный электрический момент диполя можно приписать каждой связи. Тогда электрический момент диполя молекулы может быть представлен как векторная сумма электрических моментов диполя отдельных связей. Существование или отсутствие момента диполя у молекулы связано с ее симметрией. Молекулы, имеющие симметричное строение, неполярны (? = 0). К ним относятся двухатомные молекулы с одинаковыми атомами (Н2, С12 и др.), молекула бензола, молекулы с полярными связями BF3, A1F3, CO2, ВеС12 и др.

Электрический момент диполя молекулы является важным молекулярным параметром. Знание величины ? может указать на геометрическую структуру молекулы. Так, например, полярность молекулы воды указывает на ее угловую структуру, а отсутствие момента диполя СО2 — на ее линейность.

2.2. Ионная связь

Предельным случаем ковалентной полярной связи является ионная связь. Если электроотрицательности атомов различаются очень сильно (например, атомов щелочных металлов и галогенов), то при их сближении валентные электроны одного атома полностью переходят на второй атом. В результате этого перехода оба атома становятся ионами и принимают электронную структуру ближайшего благородного газа. Например, при взаимодействии атомов натрия и хлора, они превращаются в ионы Na+ и Сl-, между которыми возникает электростатическое притяжение. Ионная связь может быть описана в рамках методов ВС и МО, однако обычно ее рассматривают с помощью классических законов электростатики.

Молекулы, в которых существует в чистом виде ионная связь, встречаются в парообразном состоянии вещества. Ионные кристаллы состоят из бесконечных рядов чередующихся положительных и отрицательных ионов, связанных электростатическими силами. При растворении ионных кристаллов или их плавлении в раствор или расплав переходят положительные и отрицательные ионы.

Следует отметить, что ионные связи обладают большой прочностью, поэтому для разрушения ионных кристаллов необходимо затратить большую энергию. Этим объясняется тот факт, что ионные соединения имеют высокие температуры плавления.

В отличие от ковалентной связи ионная не обладает свойствами насыщаемости и направленности. Причина этого состоит в том, что электрическое поле, создаваемое ионами, имеет сферическую симметрию и действует одинаково на все ионы. Поэтому количество ионов, окружающих данный ион, и их пространственное расположение определяются только величинами зарядов ионов и их размерами.

Рассматривая ионную связь, необходимо иметь в виду, что при электростатическом взаимодействии между ионами происходит их деформация, называемая поляризацией. На рис. 2.1, а изображены два взаимодействующие электростатически нейтральных иона и сохраняющие идеально сферическую форму. На рис. 2.1, б показана поляризация ионов, которая приводит к уменьшению эффективного расстояния между центрами положительных и отрицательных зарядов. Чем больше поляризация ионов, тем меньше степень ионности связи, т. е. тем больше ковалентный характер связи между ними. В кристаллах поляризация оказывается невысокой, т. к. ионы симметрично окружены ионами противоположного знака и ион подвергается одинаковому воздействию во всех направлениях.

а б

Рис 2.1. Поляризация ионов

4. Металлическая связь

Особенностью всех металлов является их высокая электропроводность и теплопроводность. Эти свойства свидетельствуют о том, что валентные электроны способны свободно перемещаться в пределах кристаллической решетки. Простейшая модель строения металла выглядит так: в узлах кристаллической решетки находятся положительные ионы металла, которые прочно связаны электронным газом. Валентные электроны одновременно находятся на всех доступных орбиталях соседних атомов, осуществляя между ними связь. Такая нелокализованная связь называется металлической. Эта связь является достаточно прочной, т. к. большинство металлов имеет высокую температуру плавления. Указанная модель объясняет также свойственные металлам ковкость (способность расплющиваться в тонкие листы) и пластичность (способность вытягиваться в проволоку). Эти свойства обусловлены тем, что подвижный электронный газ позволяет плоскостям, состоящим из положительных ионов, скользить одна по другой.

Более строгую интерпретацию металлической связи позволяет дать метод молекулярных орбиталей. Напомним, что при взаимодействии двух атомных орбиталей образуются две молекулярные орбитали: связывающая и разрыхляющая. Происходит расщепление энергетического уровня на два. Если взаимодействуют одновременно четыре атома металла, образуются четыре молекулярные орбитали. При одновременном взаимодействии N частиц, содержащихся в кристалле, образуется N молекулярных орбиталей, причем величина N может достигать огромных значений, сравнимых с числом Авогадро (6 • 1023). Молекулярные орбитали, образованные атомными орбиталями одного подуровня, находятся настолько близко, что практически сливаются, образуя определенную энергетическую зону.

Рассмотрим в качестве примера электронную структуру кристалла лития. Прежде всего, вспомним электронную конфигурацию молекулы Li2, образовавшуюся издвух изолированных атомов. При взаимодействии N ls-орбиталей в кристалле лития образуется внутренняя энергетическая зона, полностью занятая электронами. Эти электроны не принимают участия в металлической связи. Атом лития имеет один валентный электрон на 2s-орбитали. При взаимодействии N атомов лития 2s -орбитали, на которых находятся валентные электроны, образуют валентную зону. Нижняя часть валентной зоны, образованная связывающими 2s -орбиталями, заполнена электронами, которые перемещаются по кристаллу хаотически. Достаточно близко расположенная верхняя часть, образованная разрыхляющими 2s-opбиталями, электронами не занята. При наложении даже незначительной разности потенциалов электроны возбуждаются и переходят в верхнюю часть валентной зоны, где перемещаются в направлении поля, перенося электрические заряды через весь кристалл. Верхнюю часть валентной

зоны называют зоной проводимости. Таким образом, у металлов валентная зона сливается с зоной проводимости. Это связано с тем, что число валентных электронов в атомах металлов относительно невелико и всегда недостаточно для заполнения всех валентных орбиталей.

В атомах неметаллов число валентных электронов велико и валентная зона кристалла практически заполнена электронами. Зона проводимости в кристаллах, содержащих атомы или ионы неметаллов, образуется за счет орбиталей, имеющих намного большую энергию по сравнению с валентными орбиталями, т. е. принадлежащих к следующему электронному уровню. В таких кристаллах между валентной зоной и зоной проводимости находится запрещенная зона. Электроны не могут перемещаться вдоль кристалла, даже если к нему приложить высокое напряжение — такие вещества называются изоляторами или диэлектриками.

Промежуточное положение между проводниками электрического тока и диэлектриками занимают полупроводники (кремний, германий, многие сложные вещества). Особенность полупроводников состоит в том, что у них сравнительно небольшая ширина запрещенной зоны. Поэтому даже при незначительном нагревании электроны переходят в зону проводимости и вещество проводит электрический ток. В некоторых случаях переход электронов в зону проводимости происходит при освещении — возникает фотопроводимость.

В диэлектриках ширина запрещенной зоны более 3 эВ, а в полупроводниках она составляет 0,1—3 эВ.

Под действием внешнего электрического поля на диэлектрик часть его электронов, получив достаточное количество энергии, может переброситься из полностью заполненной валентной зоны в зону проводимости и участвовать в переносе электричества. При этом в валентной зоне появится эквивалентное число так называемых дырок (вакантных мест), имеющих положительный заряд. Они также могут участвовать в переносе тока. Такая проводимость называется электронно-дырочной.

5. Межмолекулярные взаимодействия

Межмолекулярное взаимодействие — взаимодействие, не приводящее к разрыву или образованию новых химических связей. Силы притяжения, действующие между молекулами на больших расстояниях (от 5-8 до 100 ?), называются силами Ван-дер-Ваальса и представляют собой кулоновские силы, возникающие между электронами и ядрами двух молекул.

При небольшом смещении отрицательных и положительных зарядов в нейтральной молекуле она перестает быть неполярной, превращаясь в электрический диполь. Имеются молекулы, обладающие постоянным электрическим дипольным моментом и называющиеся полярными. При сближении они стремятся развернуться так, чтобы их обращенные друг к другу стороны были заряжены разноименно. В этом случае суммарная сила притяжения между зарядами больше, чем суммарная сила отталкивания, поэтому полярные молекулы притягиваются. Эти электростатические силы иногда называют дипольно-ориентационными.

Если молекулы не имеют постоянного дипольного момента, то при помещении во внешнее электрическое поле они его приобретают. Во внешнем электрическом поле положительные заряды молекулы несколько смещаются в направлении поля, а отрицательные - в противоположном направлении. Поляризация может быть обусловлена также деформацией электронной оболочки неполярной молекулы под влиянием электрического поля полярной (индуцированный диполь), что всегда приводит к понижению энергии системы и притяжению молекул. Такие силы межмолекулярного взаимодействия называют поляризационными (индукционными). Межмолекулярное взаимодействие может быть связано также с переносом электронного заряда с одной молекулы на другую. Перенос заряда происходит при перекрывании электронных оболочек молекул, если их сродство к электрону различно. Перенос заряда можно рассматривать как предельный случай поляризации.

При сближении неполярных молекул электрические поля составляющих их зарядов быстро меняются во времени и лишь в среднем компенсируют друг друга в различных точках пространства. Поэтому при сближении молекулы поляризуют друг друга, причем обращенные друг к другу стороны поляризованных молекул обладают зарядами противоположного знака.

В результате взаимно поляризованные молекулы притягивают друг друга. Такие силы межмолекулярного взаимодействия называются дисперсионными (лондоновскими). Они действуют между любыми атомами и молекулами независимо от их строения.

Таким образом, различают три вида сил Ван-дер-Ваальса: электростатические (дипольно-ориентационные), поляризационые (индукционные) и дисперсионные.

6. Водородная связь

Водородная связь возникает между молекулами, в которых атом водорода связан с атомом элемента, обладающего высокой электроотрицательностью. Так, атом водорода, образующий в молекуле НХ прочную ковалентную связь с атомом X, может образовывать водородную связь с атомом X (или Y) другой молекулы. Водородную связь принято изображать пунктиром: X - Н …У. Обычно энергия водородной связи (8-80 кДж/моль) значительно уступает энергии химической связи, но намного больше энергии ван-дер-ваальсова взаимодействия (1-5 кДж/моль). Исключением является сильная водородная связь в ионе (FHF) (250 кДж/моль).

Возникновение водородной связи обусловлено двумя причинами:

1. Атом водорода, связанный полярной ковалентной связью с атомом X, фактически не имеет электронов и способен легко внедряться в электронные облака других частиц.

2. Обладая вакантной s-орбиталью, атом водорода может принимать неподеленную электронную пару атома Y, образуя с ним донорно-акцепторную связь.

Н Н

| |

Н – О ? ? ? Н - О ? ? ?

? ?

? ?

Н - Н -

Определенный вклад в образование водородной связи вносит электростатическое взаимодействие между положительно поляризованным атомом водорода в молекуле Н—X и отрицательно поляризованным атомом Y в другой молекуле. Чаще всего водородная связь образуется с участием атомов таких элементов, как кислород, фтор, азот. Наиболее типичный пример соединения с водородными связями — это вода. В жидком состоянии вода находится в виде ассоциатов (Н2О)n, а в кристаллах льда каждый атом кислорода образует по две водородные связи, что определяет его тетраэдрическое окружение.

Водородная связь существенно влияет на свойства веществ. Так, при ее наличии повышаются температура кипения, теплоты испарения и плавления, молекулы веществ в жидком состоянии становятся ассоциированными. Структура и свойства большинства органических веществ определяются образованием таких связей. Так, молекулы протеинов сохраняют свою спиральную форму из-за водородных связей. Они же удерживают вместе двойные спирали ДНК.

Мерой энергии межмолекулярного взаимодействия могут служить температура кипения и теплота испарения ?Нисп жидкости. Для некоторых жидкостей эти величины приведены в табл. 6.1.

Таблица 6.1. температура кипения и теплота испарения некоторых веществ

Вещество Ткип, К ?Нисп.

кДж/моль Вещество Ткип, К ?Нисп.

кДж/моль Аr 87,25 7,607 С2Н6 184,52 14,63 Кr 119,75 9/025 С3Н8 231,09 18,78 Хе 165,05 16,02 С5Н12 309,22 25,79 СН4 111,57 8,197 Н2О 373,15 40,66

Повышение Ткип и ?Нисп при переходе от Аг к Хе обусловлено увеличением поляризуемости, а с увеличением размеров частиц и, как следствие, к усилению дисперсионного взаимодействия. Увеличение Ткип и ?Нисп при переходе от СН4 к С5Н12 связано с тем, что с удлинением углеводородной цепи увеличивается число точек соприкосновения между молекулами и усилением межмолекулярного взаимодействия. Сравнительно высокие значения Ткип и ?Нисп воды — следствие ассоциации в результате возникновения водородных связей.

Лекция 3. СТРУКТУРА МАТЕРИАЛОВ

1. Основные понятия, термины, определения

В строительном материаловедении под структурой понимается совокупность устойчивых связей тела, обеспечивающих его целостность. Такое определение является достаточно общим. Поэтому его стараются конкретизировать, например, путем введения дополнительных понятий: кристаллическая структура, стеклообразная структура, аморфно-кристаллическая структура. Часто при рассмотрении материалов употребляют термины «плотная» или «пористая» структура. Различают микро- и макроструктуру.

При изучении макроструктуры материалов часто используют термин «текстура», который уточняет наше отношение к данному материалу. Например, для уточнения характера структуры применяют термины «волокнистая», «зернистая», «чешуйчатая» текстуры.

Текстура материала – это преимущественно ориентированное расположение элементов, составляющих материал, характеризующих рисунок его внутренних слоев или поверхности. Текстура, в отличие от структуры, не имеет такой логической связи с составом, химическими связями и свойствами и является дополнением к более широкому понятию – «структура материала».

2. Внутреннее строение матерпалов

В зависимости от агрегатного состояния и устойчивости твердые вещества могут иметь строго упорядоченное строение – кристаллическое, или неупорядоченное, хаотическое строение – аморфное.

Природа частиц, находящихся в узлах кристаллической решетки, и преобладающие силы взаимодействия (химические связи) определяют характер кристаллической решетки: атомный с ковалентными связями, молекулярный с ван-дер-ваальсовыми и водородными связями, ионный с ионными связями, металлический с металлическими связями.

Атомная решетка состоит из нейтральных атомов, связанных между собой ковалентными связями. Вещества с ковалентными связями отличаются высокой твердостью, тугоплавкостью, нерастворимостью в воде и в большинстве других растворителях. Примером атомных решеток являются алмаз и графит. Энергия ковалентных связей составляет от 600 до 1000 кДж/моль

Молекулярная решетка построена их молекул (I2, Cl2, CO2 и т.д.), связанных друг с другом межмолекулярными или водородными связями. Межмолекулярные связи имеют небольшую величину энергии, не более 10кДж/моль; несколько большую величину имеют водородные связи (20-80 кДж/моль), поэтому вещества с молекулярной решеткой имеют невысокую прочность, низкую температуру плавления, высокую летучесть. Такие вещества не проводят ток. К веществам с молекулярной решеткой относятся органические материалы, благородные газы, некоторые неорганические вещества.

Ионная решетка образуется атомами, сильно отличающимися по электроотрицательности. Она характерна для соединений щелочных и щелочноземельных металлов с галогенами. Ионные кристаллы могут состоять и из многоатомных ионов (например, фосфаты, сульфаты и пр.). В такой решетке каждый ион окружен определенным числом его противоионов. Например, в кристаллической решетке NаCl каждый ион натрия окружен шестью ионами хлора, а каждый ион хлора – шестью ионами натрия. Вследствие ненаправленности и ненасыщенности ионной связи кристалл можно рассматривать как гигантскую молекулу, а обычное понятие молекулы здесь утрачивает свой смысл. Вещества с ионной решеткой характеризуются высокой температурой плавления, малой летучестью, высокой прочностью и значительной энергией кристаллической решетки. Эти свойства сближают ионные кристаллы с атомными. Энергия связи ионной решетки примерно равна, по некоторым источникам меньше, энергии ковалентной решетки.

Металлические решетки образуют металлы. В узлах решеток находятся ионы металлов, а валентные электроны делокализованы по всему кристаллу. Такие кристаллы можно рассматривать как одну огромную молекулу с единой системой многоцентровых молекулярных орбиталей. Электроны находятся на связывающих орбиталях системы, а разрыхляющие орбитали образуют зону проводимости. Так как энергия связи связывающих и разрыхляющих орбиталей близка, электроны легко переходят в зону проводимости и перемещаются в пределах кристалла, образуя как бы электронный газ. В табл. 3.1 в качестве примера приведены энергии связи для кристаллов с разным типом связи.

Упорядоченное расположение частиц в кристалле сохраняется на больших расстояниях, а в случае идеально образованных кристаллов – во всем объеме материала. Такая упорядоченность строения твердых тел носит название дальний порядок.

Таблица 3.1. Энергия связи в кристаллах

Кристалл Ar CH4 Алмаз SiC LiF NaCl Fe Na Энергия связи кДж/моль 7,5 10 750 1180 1000 750 390 110 Тип связи Ван-дер-вальсовская Ковалентная Ионная Металлическая

В телах с менее упорядоченным или хаотичным расположением частиц, что свойственно аморфным телам, имеет место лишь местная упорядоченность, которая не распространяется дальше данной совокупности частиц. В этом случае говорят, что имеет место ближний порядок. Хаотичность расположения частиц свидетельствует о неустойчивом агрегатном состоянии системы, способном изменяться как под действием внутренних, так и внешних факторов. Аморфные тела, например, не имеют определенной точки плавления.

Каждому агрегатному состоянию соответствует определенное соотношение между потенциальной и кинетической энергиями частиц вещества. У твердых тел потенциальная энергия частиц больше кинетической. Поэтому они занимают в теле вполне определенное положение относительно других частиц и лишь колеблются около этих положений.

В газах кинетическая энергия частиц превышает потенциальную, поэтому молекулы газов всегда находятся в состоянии хаотического движения. Силы сцепления между молекулами отсутствуют, вследствие чего газ заполняет весь предоставленный ему объем.

У жидкостей соотношение между энергиями стремится к единице, т. е. частицы связаны друг с другом, но не жестко. Поэтому жидкости обладают текучестью, но имеют при данной температуре постоянный объем. По строению жидкости напоминают аморфные твердые тела; каждая частица жидкости окружена одинаковым количеством ближайших соседних частиц, т.е. для жидкостей характерен «ближний порядок» взаимодействия частиц.

Итак, что же такое микроструктура и макроструктура? Иногда в строительном материаловедении упоминают «мезоструктуру». Обобщая имеющиеся высказывание по данному вопросу. Г.И. Горбунов справедливо, по нашему мнению, предлагает различать только микроструктуру и макроструктуру строительных материалов. Микроструктура – это структура материала, которую можно рассматривать, изучать с помощью оптических, электронных, рентгеновсих и пр. приборов; Макроструктура – это структура материала, которую можно видеть невооруженным глазом. Традиционно микроструктуру подразделяют на кристаллическую, аморфную и аморфно-кристаллическую.

3. Микроструктура

3.1. Кристаллическая структура

Изложенное выше позволяет дать следующее определение понятию «кристаллическая структура». Кристаллическая структура – это такая структура, которой свойственно упорядоченное расположение частиц в строго определенных точках пространства, которые образуют кристаллическую решетку. Эта упорядоченность позволяет экспериментально и теоретически полностью изучить структуру твердого состояния и явления, связанные с природой сил взаимодействия в кристаллических телах.

Для каждого кристалла характерна анизотропность и резко выраженная температура перехода в жидкое состояние. Кристаллы характеризуются внешней симметрией в расположении частиц, которая выражается наличием трех элементов симметрии: центра, оси и плоскости симметрии. Центр симметрии – точка, делящая пополам все соединительные между внешними поверхностями кристалла прямые линии, проведенные через нее по любому направлению. Плоскость симметрии делит кристалл на две части, относящиеся друг к другу, как предмет к своему зеркальному отражению. Ось симметрии – это такая линия, при повороте вокруг которой на определенный угол получается полное совпадение нового положения с прежним. Чем больше элементов симметрии, тем выше внешняя симметрия кристалла. Идеально симметричной фигурой является шар.

В настоящее время все многообразие кристаллических форм по сочетанию элементов симметрии (сингонии) сводится к семи типам: правильная (кубическая), тригональная, гексагональная, тетрагональная, ромбическая, моноклинная и триклинная. В таблице 3.2. приведена классификация кристаллов по сингонии.

Таблица 3.2. Классификация кристаллов по сингонии

Сингония Класс Название Соотношение ребер Соотношение углов Название минералов Высшая VII Кубическая а=в=с ?=?=?=90о Алмаз, галит Средняя VI Тетрагональная а=в?с ?=?=?=90о Апатит V Гексагональная а=в?с ?=?=90о; ?=120о Циркон IV Тригональная а=в=с ?=?=??90о Кварц Низшая III Ромбическая а?в?с ?=?=?=90о Муллит II Моноклинная а?в?с ?=?=90о; ??90о Гипс, авгит I Триклинная а?в?с ?=?=??90о Полевой шпат

Кристаллы низшей сингонии характеризуются меньшей симметрией; кристаллы более высокой категории сингонии имеют более совершенную форму кристаллической решетки и, следовательно, являются более устойчивыми в определенных условиях существования.

Многим веществам в кристаллическом состоянии характерен полиморфизм, т.е. способность вещества существовать в виде нескольких кристаллических структур с различными свойствами. Полиморфизм простых веществ называется аллотропией. Известны полиморфные модификации углерода (алмаз, графит), кварца (?-кварц, ?-кварц), железа, вольфрама и др.

Если два разных вещества имеют одинаковую кристаллическую структуру, похожую химическую формулу и не очень сильно различаются по размеру составляющих их частиц, то они могут образовывать смешанные кристаллы. Такие вещества называют изоморфными, их способность образовывать смешанные кристаллы – изоморфизмом. Пример: сходные по составу и структуре, но разные по свойствам являются кристаллы каолинита Al2O3.2SiO2.2H2O, пирофиллита Al2O3.4SiO2.2H2O и монтмориллонита Al2O3.4SiO2.3H2O.

Реальные кристаллы. В свей практической деятельности мы имеем дело с реальными кристаллми, которые отличаются от идеальных нарушениями (дефектами) кристаллической решетки, образующимися в результате изменения равновесных условий роста кристаллов, захвата примесей при кристаллизации, а также под влиянием различного рода внешних воздействий.

Различают следующие дефекты:

- точечные или нульмерные – это вакансии, междуузельные атомы и пр;

- линейные или одномерные – это дислокации (краевые, винтовые);

- поверхностные или двумерные – это границы зерен и двойников, межфазные границы, дефекты упаковки частиц, трещины на поверхности (трещины Гриффитса);

- объемные или трехмерные – это пустоты, включения второй фазы и пр.

Точечные дефекты подразделяются на энергетические, электронные и атомные.

К энергетическим дефектам относят фононы – кванты тепловых колебаний, которые заполняют кристаллы и распределяются в них соответственно условиям теплового равновесия. К этому же типу дефектов относят возбуждения решетки в результате облучения кристаллов световыми, рентгеновскими и прочими лучами.

К электронным дефектам относят наличие избыточных электронов или их недостаток.

К атомным дефектам относят нарушения в виде вакансий (дефекты по Шотки), смещений (дефекты по Френкелю), избытка или недостатка атомов, а также примеси посторонних атомов.

Дислокациями называют линейные дефекты, возникшие в процессе роста или пластической деформации кристалла. Различают краевые и винтовые дислокации.

Образование дислокаций в процессе роста кристаллов происходит в тех случаях, когда растущие навстречу блоки и зерна повернуты друг относительно друга. При срастании таких блоков образуются избыточные атомные плоскости – дислокации.

В процессе пластической деформации происходит не одновременный сдвиг атомов данной плоскости, а последовательное перемещение связей между атомами, лежащими по обе стороны линии скольжения. Такое перераспределение связей предопределяет движение дислокаций от одной группы атомов к другой. Количество дислокаций в твердых кристаллических телах очень велико. Число дислокаций пересекающих 1см2 площади внутри кристалла может достигать 104 –106 и более.

Наличие дислокаций значительно снижает прочность кристаллов, на несколько порядков. Дислокации влияют на электрические, оптические, магнитные и другие свойства материалов.

Вместе с тем замечено, что при определенных условиях дислокации и другие дефекты кристаллов увеличивают прочность материалов. Это происходит тогда, когда накоплено значительное количество дислокаций, которые, взаимодействуя друг с другом, мешают своему развитию и перемещению. Перемещению дислокаций препятствуют также атомы примесей, границы блоков, различные обособленные включения в решетки. Отсюда ряд исследователей делают вывод о положительном влиянии дислокаций на прочностные свойства материалов. Видимо, все таки, лучше вообще не иметь дефектов, чем иметь их в огромном количестве, которое несколько увеличивает прочность материала по сравнению с некоторой минимальной прочностью, которую имеет материал при неблагоприятном числе дефектов. Прочность бездефектного материала в сотни раз больше прочности материала с «оптимальным» количеством дефектов. Необходимо также отметить возможность локального скопления дислокаций, которые могут вызвать местные концентрации напряжений, которые способны образовать зар

одыши микротрещин (трещины Гриффитса).

3.2. Аморфная структура

Аморфная структура является одним из физических состояний твердых тел, Аморфные вещества характеризуются двумя особенностями. Во-первых, свойства таких веществ при обычных условиях не зависят от выбранного направления, т.е. они - изотропны. Во-вторых, при повышении температуры происходит размягчение аморфного вещества и постепенный переход его в жидкое состояние. Точное значение температуры плавления отсутствует.

Общим для кристаллического и аморфного состояний веществ является отсутствие поступательного перемещения частиц и сохранение только их колебательного движения около положения равновесия. Различие между ними состоит в наличии геометрически правильной решетки у кристаллов и отсутствии дальнего порядка в расположении атомов у аморфных веществ.

Аморфное состояние вещества, по сравнению с кристаллическим, всегда менее устойчиво и обладает избыточным запасом внутренней энергии. В связи с этим, при определенных условиях, самопроизвольно осуществляется переход из аморфного состояние в кристаллическое.

Твердые тела в аморфном состоянии можно получить двумя путями. Первый путь – быстрое охлаждение расплавов кристаллических веществ, преимущественно ионного и ковалентного строения. Типичный представитель таких аморфных тел – силикатные стекла, битумы, смолы и пр.

Второй путь – диспергация кристаллических структур. В результате диспергации кристаллических тел образуются аморфизованные дисперсии в виде коллоидов и растворов. Разрушаясь или конденсируясь, дисперсии изменяют свое агрегатное состояние. Пересыщенные растворы, например, могут превратиться в гель и образовать полимер или кристаллизоваться.

Аморфные вещества подразделяют на витроиды (стекла), дисперсные системы и полимеры.

Витроиды – это твердые тела в аморфном состоянии, имеющие стекловидную структуру. Как уже отмечалось, стекла образуются в результате быстрого охлаждения, преимущественно силикатных расплавов. Быстрое охлаждение препятствует созданию упорядоченной структуры. Особенно, если молекулы громоздки, а скорость охлаждения велика.

Дисперсные системы – мельчайшие частицы размером 10-7-10-9 м. к ним относятся коллоиды, золи (органозоли, гидрозоли), пасты, клеи мастики краски, латексы и пр. К дисперсным аморфным системам относятся также некоторые горные породы (диатомит, опоки), имеющие общую формулу SiO2.nH2O; а также активный кремнезем, который образуется в результате разложения глин при их нагревании.

Полимеры – вещества, характерной особенностью которых является большой размер и большая молекулярная масса молекул. Кроме того, молекулы объединены в структурные единицы, включающих 103-105 молекул-мономеров.

3.3. Аморфно-кристаллическая структура

Многие природные и искусственные каменные материалы в своем составе содержат и кристаллические, и аморфные фазы. Соотношение между объемами кристаллической и аморфной фазами, а также их взаимное расположение оказывают огромное влияние на свойства материалов, имеющих такую структуру. Типичными представителями подобных материалов являются ситаллы, фарфор и другие керамические материалы. Свойства некоторых материалов, имеющих амрфно-кристаллическую структуру приведены в табл. 3.2.

Таблица 3.2. Свойства материалов с аморфно-кристаллической структурой

Наименование материала Содержание стеклофазы, % Плотность, г/см3 Прочность, МПа Водопоглощение, % Фарфор 40-60 2.3-2.5 680 < 0,5 Плитка керамическая 10-30 2.0-2,2 20-50 1,5-4,0 Каменное литье < 5 2,6-3,0 200-250 0 Ситаллы 5-10 2,3-2,5 ~ 500 0

Все представленные в таблице материалы обладают аморфно-кристаллической структурой, содержат кристаллы и стекловидную фазы. Как видно из приведенных данных, содержание фаз не оказывает решающего влияния на свойства материалов. Ситаллы и каменное литье имеют небольшое количество стеклофазы по сравнения с керамической плиткой и, видимо, поэтому имеют более высокую (в 10-20 раз большую) прочность, чем плитка. Однако, фарфор содержит стекловидную фазу в большем размере, чем ситаллы и каменное литье, а прочность имеет большую, чем эти материалы. Несомненно, свойства материалов с аморфно-кристаллической структурой зависят не только от количества этих фаз, но и от их качества, и взаимного расположения друг относительно друга – от микро- и макроструктуры.

4. Макроструктура

Макроструктура – это видимая невооруженным глазом или при небольшом увеличении (до 6 раз) внутренняя или поверхностная часть материала. В строительном материаловедении принято различать структуры поверхностного и внутреннего слоев.

4.1. Особенности структуры поверхностного слоя.

Структура поверхностного слоя искусственных строительных материалов, как правило, отличается от структуры внутренних слоев по двум причинам. Первая, атомы и молекулы, расположенные на поверхности, имеют избыточную энергию по сравнению с частицами, расположенными внутри материала. Вторая, поверхностный слой постоянно взаимодействует с окружающей средой, благодаря чему он претерпевает постоянные изменения, как в процессе изготовления изделий, так и в процессе их эксплуатации.

Избыточная энергия поверхностного слоя возникает вследствие того, что каждая частица на поверхности твердого тела и жидкости имеет некомпенсированные химические связи, которые образуют на поверхности несимметричное силовое поле. Это силовое поле втягивает поверхностные частицы во внутрь материала, создавая на поверхности напряжение сжатия. Поверхностный слой, таким образом, постоянно находится в упруго-напряженном состоянии, а его частицы обладают значительно большим запасом потенциальной энергии, чем частицы внутреннего слоя. Благодаря этому частицы поверхностного слоя более активно реагируют с окружающей средой, более активно вступают в химические реакции.

Величина энергии поверхностного слоя прямо пропорциональна энергии химической связи данного материала и зависит от параметров окружающей среды. Так, например, поверхностная энергия твердого тела на границе с жидкостью, которая его смачивает, уменьшается на величину, равную силе взаимодействия поверхностных частиц с жидкостью.

Большое влияние на строение и поверхностных, и внутренних слоев материала оказывают примеси, смачивание поверхности активными жидкостями, диффузионные процессы.

Примеси оказывают не однозначное влияние на свойства внешних и внутренних слоев. Если примеси имеют меньшую поверхностную энергию, чем материал, то они равномерно распределяются по поверхности, уменьшая его энергию. Если большую, - то концентрируются на отдельных участках поверхности или перемещаются во внутренние слои материала, где могут оказывать как положительное, так и отрицательное влияние на его свойства.

Смачивание имеет большое значение при формировании композиционных материалов, искусственных строительных конгломератов (по определению Рыбьева). Смачивание компонентов искусственных смесей необходимо для уменьшения энергии поверхностей твердых составляющих, что позволяет получать более плотные их упаковки в искусственных конгломератах.

Диффузия представляет собой самопроизвольное перемещение частиц вещества, в результате которого устанавливается равновесное распределение концентрации этих частиц в объеме газа, жидкости, твердого тела. Перенос частиц методом диффузии мы наблюдаем при получении - обжиге строительной керамики, глазуровании керамических плит, получения фарфора и пр. Высокая прочность фарфора не в малой степени определена диффузией расплава в направлении кристаллической части материала, в результате чего уплотняется структура и упрочняется зона контакта.

4.2. Особенности структуры внутреннего слоя.

Макроструктура внутреннего слоя строительного материала достаточно хорошо просматривается на срезе невооруженным глазом или через обычную лупу. В состав структуры входят отдельные твердые тела (зерна) различной крупности, поры и матрица, объединяющая зерна в единый монолит. В качестве матрицы могут быть затвердевший цементный камень, алюмосиликатное или полимерное стекло, затвердевшая глина и пр.

Еще раз подчеркнем, что деление структуры строительных материалов на макро- микроструктуру является весьма условным. Такое деление имеет чисто методологическое значение; оно позволяет упростить реологические модели деформирования систем, характеризующихся разным размером компонентов, и, следовательно, применить для описания процессов более простые математические модели.

Единая и монолитная структура строительного материала может быть оптимальной и не оптимальной.

Оптимальная структура характеризуется равномерным распределением компонентов системы (заполнителей, пор, элементов матрицы и пр.) по строительному материалу; отсутствием или минимальным количеством дефектов; наличием непрерывной пространственной сетки – матрицы; наибольшей плотностью упаковки зерен твердой дискретной составляющей как на микро-, так и на макро-уровне.

Не оптимальными являются структуры, в которых не соблюдается хотя бы одно из перечисленных условий.

4.3. Основные характеристики макроструктуры

Мы рассмотрим те характеристики материалов, которые не вошли в действующие стандарты. Поэтому к ним не сформулированы требования, и они, как бы, не являются свойствами строительных материалов. Но эти характеристики имеют существенное значение для общей оценки качества того или иного материала. Они также помогают повысить объективность тех или иных показателей качества, регламентированных стандартами.

Пористость

Пористость – степень заполнения объема материала порами. Обычно выражают в %:

П = [(Vест – Vп)/Vест].100;

Где Vест – объем твердого тела вместе с порами;

Vп – объем твердой фазы тела.

Чаще пористость рассчитывают, исходя из кажущейся ?m и истинной ? плотности материала:

П = (1 – ?m / ?)100.

Пористость строительных материалов колеблется от 0 до 90-98%. Для сравнения в табл. 3.3. приведены величины пористости некоторых материалов.

Помимо объема пор на свойства материалов большое влияние оказывают геометрическая и структурная характеристики пор. К геометрической характеристике относят размер пор, их общую удельную поверхность, общий объем пор. К структурной характеристике относят форму пор (ячеистая, замкнутая, волокнистая) и характер пор (открытые, замкнутые, сообщающиеся).

Таблица 3.3. Значения пористости некоторых материалов

Наименование материала Плотность, кг/м3 Пористость, % истинная кажущаяся Гранит 2700-2800 2600-2700 0,5-1 Тяжелый бетон 2600-2700 2200-2500 8-12 Кирпич 2500-2600 1400-1800 25-45 Керамзит (зерна) 2400-2600 250-1000 60-90 Пеностекло 2350-2450 100-300 88-95 Древесина 1500-1600 400-800 45-70 Пенопласт 900-1200 20-100 90-98

Наиболее стройной и общей для различных видов материалов является классификация по размеру пор:

- макропоры > 10мкм (по Дубинину); > 0,5мкм (по Ф.М. Иванову);

- капиллярные поры > 1мкм (по Г.И Горчакову);

- контракционные – 1-10-2 мкм (по Горчакову);

- поры геля – 10-2-10-4мкм (по Горчакову).

Макропоры и капиллярные поры относятся к элементам макроструктуры. Более мелкие поры – к элементам микроструктуры.

Капиллярами принято называть канальные поры, которые способны впитывать жидкость. Впитывание жидкости происходит, если так называемый капиллярный потенциал в каждой точке соприкосновения жидкости с внутренней поверхностью превышает потенциал поля тяжести.

Капиллярный потенциал зависит от величины поверхностного натяжения, радиуса капилляра, плотности жидкости, краевого угла смачивания жидкости при взаимодействии с данным материалом. Впитывание жидкости происходит, если так называемый капиллярный потенциал ?к.п в каждой точке соприкосновения жидкости с внутренней поверхностью капилляра превышает потенциал поля тяжести ?к.п.т Эффект впитывания тем выше, чем больше разность потенциалов, т.е. ?к.п - ?к.п.т ? ?.

Под капиллярным потенциалом понимают потенциальную энергию поля капиллярных сил, отнесенную к единице массы жидкости (плотности).

Для цилиндрического капилляра, один конец которого находится в воде, капиллярный потенциал в Н.м/кг определяют по формуле:

?к.п =(2?п.н./?ж).(1/r)

где: ?п.н - коэффициент поверхностно натяжения, Н/м;

?ж - плотность жидкости, кг/м3;

г - радиус кривизны мениска, м.

Потенциал поля тяжести:

?к.п.т = gh

где: g - ускорение свободного падения, м/с;

h - высота капилляра, м.

При поднятии уровня жидкости в капилляре разность потенциалов уменьшается и при ?к.п.т = ?к.п. высота капилляра h — достигает максимума. С учетом краевого угла смачивания максимальная высота капиллярного подъема жидкости в пористом материале может быть вычислена по формуле Жюрена:

h = 2 ?п.н соs/ ?ж г g,

где г — условный радиус капилляра, м.

Средний радиус капилляра, т.е. поры, в которой имеет место капиллярный подсос, для различных материалов неодинаков, так как основные параметры этого процесса значительно различаются.

В стеновых материалах, где основными взаимодействующими фазами являются вода и цементный камень, верхний критический размер пор, впитывающих воду, не превышает 20 мкм, тогда как в огнеупорных материалах, работающих в среде расплавленных шлаков, этот критерий составляет - 25 мкм. В последнем случае химическое взаимодействие жидкой и твердой фаз уменьшает потенциал капиллярного подсоса.

В стеновых материалах с учетом изменения фазового состояния воды макропоры (по А.С. Беркману и И.Г. Мельниковой — свыше 200 мкм) являются резервными, а микропоры (<0,05 мкм) - безопасными. Но, по В.М. Москвину и Г.И. Горчакову, опасный интервал размера пор несколько уже, так как при уменьшении радиуса капилляра вода в нем замерзает при более низкой температуре.

Интересно отметить, что значения нижних критических радиусов капилляров при заполнении водой и силикатными расплавами практически одинаковы и равны примерно 0,1 мкм. Это указывает на близкие значения длин свободного пробега молекулы воды при тем температуре 20°С и силикатных расплавов при 1500°С.

Однако, практически, в поры размером ниже 5 мкм шлаки не проникают. По-видимому, это объясняется увеличением вязкости в тонких капиллярах как в результате изменения состава шлаков (коррозия), так и под влиянием пристеночного эффекта.

Таким образом, для огнеупорных материалов опасный интервал, связанный с прониканием шлаков в капилляры, находится в пределах 5.. .25 мкм (по данным К.К. Стрелова).

Исходя из вышесказанного, можно констатировать, что основная проблема оптимизации пористой структуры материалов, в частности повышения морозостойкости для гидратационных и эксплуатационной стойкости обжиговых систем, связана с уменьшением интервала между верхним и нижним критическими радиусами капилляров. А как это осуществить? Есть два возможных варианта:

- исключение из структуры опасного интервала капиллярных пор путем создания преимущественно крупнопористой или мелко пористой структуры;

- уменьшение капиллярного потенциала системы при неизменных пористости и размерах радиусах капилляров.

Рассмотрим первый вариант. Крупнопористая структура (макропоры) без учета некоторых факторов может отвечать требованиям к акустическим, теплоизоляционным и некоторым видам стеновых материалов, а мелкопористая (микропоры) — материалам для несущих, гидротехнических и других конструкций. Однако есть некоторые нюансы. Создание крупнопористой, а значит, высокопористой структуры влечет за собой резкое снижение прочностных характеристик изделий. Получение же плотной структуры с пористостью ниже 10% представляет в настоящее время серьезную проблему, особенно для гидратационных материалов.

Второй вариант. Уменьшение капиллярного потенциала системы теоретически возможно лишь за счет снижения сил поверхностного натяжения, т.е. снижения поверхностной энергии твердой фазы, и увеличения краевого угла смачивания контакта “жидкость — твердая фаза”, т.е. снижения эффекта смачиваемости.

Следует заметить, что оба эти фактора взаимозависимы, и поэтому для снижения капиллярного потенциала ?к.п гидратационных систем ограничиваются снижением смачиваемости за счет применения гидрофобных добавок, а для обжиговых материалов, в частности огнеупоров, используют так называемые “спеки”, или специальные покрытия поверхности твердой фазы тонким твердым высокоогнеупорным слоем с низким значением поверхностной энергии, так как снизить смачиваемость самих шлаков практически невозможно Кроме того, для снижения ?к.п в технологии огнеупоров используют различного рода “присадки”, вызывающие адсорбционный эффект.

Гигроскопичность

Анализируя вышеизложенное, можно заключить, что при уменьшении радиуса пор ниже критического значения (< 0,5 мкм) исчезает капиллярный подсос, однако жидкость все же заполняет даже мельчайшие поры за счет конденсации паров на их стенки с последующим переходом пленок в столбик жидкости. Такое свойство заполнения пор жидкостью называют гигроскопичностью структуры.

Согласно эмпирическому уравнению Фрейндлиха можно рассчитать количество адсорбированного газа или водяного пара (?):

? = Kpl/n,

где: pl/n — давление газа;

К и п — эмпирические параметры, постоянные для адсорбента и газа при определенной температуре.

Такие высокопористые материалы, как силикагель, древесина керамзитовый гравий и др., могут быть использованы в качестве регуляторов влажности в замкнутых объемах. Ограждающие конструкции из древесины и керамического кирпича благодаря гигроскопичности структуры и в зависимости от климатических условий регулируют влажностный режим помещения, т.е. они как бы дышат.

П.А. Ребиндер дает следующую классификацию пор по насыщению их жидкостью (табл. 3.4).

Пористость как основная характеристика структуры во многом определяет такие ее свойства, как теплопроводность, прочность и др.

Таблица 3.4. Классификация пор по насыщению их жидкостью

Структура материала Размер пор, мкм Характер пор Характер процесса Физический смысл явления Крупнопористая >10 (20) Макропоры

(резервные) Насыщение окунанием Гравитационное вытеснение газа жидкостью Пористая 10 (20)…0,5 Капилляры (опасные) Капиллярный подсос ?кп > ?пт Мелкопористая < 0,5 Микропоры

(безопасные) Сорбция и конденсация ?= Кр1/n

Газопроницаемость

Газопроницаемость - свойство пористой структуры пропускать газ при перепаде давлений. Газопроницаемость зависит от размеров и вида пор, поэтому этот показатель часто используют при оценке равномерности структуры.

Наибольшее значение газопроницаемости соответствует размеру пор порядка 20... 100 мкм. Однако проницаемость газов через бетоны может происходить и при более низких значениях размера пор (0,1 мкм и ниже), например, в тонких трещинах.

Газопроницаемость весьма чувствительна к изменению структуры изделий. Так, если при некотором изменении структуры открытая пористость изменилась в 2 раза, то газопроницаемость меняется более чем в 100 раз.

Поскольку материал, как правило, имеет макро- и микропоры, перенос газа может происходить одновременно вязкостным и молекулярным потоками, которые подчиняются соответственно законам Пуазейля и Кнудсена.

Таблица 3.5. Сопротивление воздухопроницанию некоторых материалов и конструкций.

Материал конструкции Толщина слоя, мм Сопротивление воздухопроницанию, м2.ч.Па/кг Кирпичная кладка 120 2000 Обшивка из шпунтованных досок 20…25 15 Плиты минераловатные, жесткие 50 2 Легкий бетон, слитный 400 13000 Цементно-песчаная штукатурка 15 373 Пенобетон автоклавный 100 1960 Бетон тяжелый, слитный 100 19620

Для вывода уравнения газопроницаемости пористость материала условно представляют в виде цилиндрических каналов одинакового сечения, идущих параллельно направлению движения газа.

Уравнение Пуазейля хорошо отражает процесс газопроницаемости, но очень сложно для практических расчетов. Поэтому часто для расчета газопроницаемости строительных изделий и конструкций используют упрощенную формулу Дарси, хотя она описывает лишь перенос газа через стенку:

V = Kr.А. ?.?р/?,

где V — объемный или массовый поток газа в единицу времени, м3/c или кг/с;

Kr — коэффициент газопроницаемости. Для объемной газопроницаемости — м2/Па.с; для массовой — кг/м.Па.с;

А — площадь сечения потока, м2;

? — время протекания процесса, с;

? — глубина проникания газа, м.

?р – Разность давлений газа на входе и выходе из поры, Па.с.

Коэффициент газопроницаемости фактически является той физической константой для каждой пористой структуры, которая оценивает ее способность, при определенных условиях, пропускать газ.

При расчете строительных конструкций учитывают газопроницаемость структуры материалов через сопротивление воздухопроницанию.

Паропроницаемость

Паропроницаемость является разновидностью газопроницаемости с той лишь особенностью, что пар способен в зависимости от условий изменять свое агрегатное состояние, т.е. конденсироваться, вытесняя газовую фазу, и значительно изменять свойство структуры. В табл. 3.6. приведены данные о сопротивлении паропроницаемости некоторых материалов.

Паропроницаемость, как характеристику структуры рассматривают в двух аспектах:

- материаловедческом — защита структуры и конструкции в целом от разрушительного действия конденсата;

- теплофизическом — решение проблемы создания надлежащего телловлажностного режима помещения.

Таблица. 3.6. Сопротивление паропроницанию некоторых строительных материалов

Материал Толщина слоя, мм Сопротивление паропроницанию, м2.ч.Па/мг Плиты древесноволокнистые, твердые 10 0,11 Листы гипсовые (сухая штукатурка) 10 0,12 Пергамин кровельный 0,4 0,33 Толь кровельный 1,9 0,4 Рубероид 1,5 1,1 Пленка полиэтиленовая 0,16 7,3

В обоих случаях устраивают так называемую пароизоляцию с внутренней стороны ограждающих конструкций, в частности наружных стен и покрытий здания, из газопаронепроницаемых материалов. Качество таких материалов характеризуется сопротивлением паропроницанию Rn в м2.ч.Па.с/мг.

Водопроницаемость

Водопроницаемость - способность пористой структуры пропускать воду (жидкие среды) под давлением. Как характеристика структуры водопроницаемость аналогична газопроницаемости и подчиняется тем же законам течения жидкости под давлением.

Методы определения водопроницаемости позволяют полнее судить о характере пористой структуры.

Определение водопроницаемости сухих и предварительно насыщенных образцов дает близкие по значению конечные результаты. Однако в первом случае по кинетике проницания воды, характеризуемой изменением электропроводности, можно судить об анизотропии пор, для чего водопроницаемость измеряют в трех взаимно перпендикулярных направлениях, тогда как во втором - такой вывод сделать невозможно.

Фактор анизотропии выражается среднеквадратичным отклонением а выборочной дисперсии коэффициентов водопроницаемости

в трех направлениях (кь к2, к3), отнесенных к его среднему значению КсР:

Каниз = ?/ КсР

Чем ниже значение этого фактора, тем меньше степень анизотропии структуры. Для изотропной структуры он равен нулю.

Значение водопроницаемости одной и той же структуры значительно ниже, чем газопроницаемости. Это можно объяснить рядом причин:

- значительным различием величин вязкости жидкостей и газа;

- возможным образованием застойных зон жидкости вследствие

отрыва вязкой жидкости в процессе обтекания твердого тела;

- уменьшением фильтрации жидкости, связанным с действием

электростатических сил между жидкостью и твердой фазой.

Свойство, обратное водопроницаемости, - водонепроницаемость. Характеризует структуру плотных материалов, работающих в условиях непосредственного контакта с водой (например, гидротехнический бетон). Такие материалы подразделяются на классы по водонепроницаемости (W2, W4, W6, W8, W12). Цифра показывает величину давления воды в кгс/см2, при котором образец - цилиндр высотой 15 см не пропускает воду.

Лекция 4. СВОЙСТВА МАТЕРИАЛОВ

1. Основные понятия, термины, определения

Свойство - это качественная, отличительная характеристика вещества, материала или изделия. В материаловедении эта характеристика является заключительным звеном во взаимосвязи «состав - химическая связь — структура — свойство», а при разработке технологии и создании нового материала — основным, определяющим параметром или условием его получения.

Совокупность различных свойств предопределяет назначение материала и граничные условия его эксплуатации.

Часто, особенно производственники, используют сходные с понятием “свойство” термины, такие, как “техническая характеристика”, “основные параметры”, “технические показатели” и др., которые в конкретном контексте строительного материаловедения являются не совсем корректными. Эти термины вполне приемлемы в тех случаях, когда они не подменяют понятие “свойство”.

Свойство — это отличительная особенность вещества, материала или изделия, которая проявляется во взаимодействии с окружающей средой или с другими веществами и соединениями.

В зависимости от вида окружающей среды и характера взаимодействия все свойства объединены в крупные группы. Например, теплопроводность, теплоемкость, температуропроводность и др. от носятся к теплофизическим свойствам; водопоглощение, водопроницаемость и др. часто называют гидрофизическими свойствами; водостойкость, кислотостойкость, коррозионная стойкость и др. составляют группу химических свойств; упругость, пластичность, хрупкость и др. — упругодеформативные свойства, и т.д.

Количественно свойства определяются при испытании и, как правило, выражаются в физических величинах в соответствии с действующими стандартами.

2. Взаимосвязь основных свойств

Так как свойства материала являются производными от его со става, химических связей и структуры, то они взаимосвязаны и находятся в равновесии. Известно, что при изменении какого-либо одного свойства под действием каких-то факторов в большей или меньшей степени изменяются и другие свойства материала. В строительном материаловедении хорошо известны такие зависимости, как плотность — теллопроводность, плотность — прочность, теллопроводность — электропроводность упругость — пластичность и др.

3. Плотность

Плотностью называют физическую величину, определяемую для однородного вещества его массой в единице объема.

Для неоднородного вещества плотность ? его в определенной точке есть предел отношения массы m к объему V при объеме, стремящемся к этой точке:

? = lim m/V при V ? О.

Для характеристики макроструктуры материала с учетом наличия газовой фазы используют термин «средняя плотность», обозначаемый символом рm. Средняя плотность всегда меньше истинной, так как на одну и ту же единицу массы приходится больший объем (? ср < ?). Разность между этими величинами, отнесенная к большей величине, есть пористость.

При изучении свойств кристаллов, минералов, жидких и газовых сред под плотностью подразумевают (строительное материаловедение) истинную плотность, а при изучении строительных материалов (кроме плавленых) — среднюю или кажущуюся плотность.

С точки зрения химического строения вещества, плотность есть функция его химического состава. Согласно принципу минимальной энергии каждый атом стремится взаимодействовать с максимально большим числом других атомов, что приводит к образованию плотнейших упаковок. Количественно это характеризуется коэффициентом плотности Kпл, который определяется по формуле:

Kпл = n.Vяч /Vмол

где n - число молекул в ячейке;

Vмол - объем молекулы;

Vяч - объем ячейки.

Характер упаковки атомов и его влияние на плотность хорошо просматриваются на примере плотно упакованных решеток кристалла.

Простейшим типом кристаллической решетки является кубическая, в которой расположение атомов образует пустотность, приблизительно равную 48%. Более плотной является гранецентрированная кубическая упаковка, дающая около 26% пустот. В такой решетке каждый атом имеет 12 ближайших соседей (4 по бокам и по 4 сверху и снизу). Кроме того, она образует два типа пустот: октаэдрические (окружение из 6 атомов) и тетраэдрические (окружение из 4 атом ов). Гексагональная решетка также относится к плотнейшим упаковкам и отличается от гранецентрированной лишь способом наложения слоев (без смещения) (рис. 4.2).

Плотность кристаллических решеток оксидов очень высока, так как пустоты, образуемые ионами, частично или полностью заполнены катионами. Кроме того, при одинаковой упаковке атомов плотность зависит от молекулярной массы оксида. При равных молекулярных массах, например в силикатах, решающее значение имеет координационное число и валентность катиона. для примера сравним характеристики двух оксидов: А12O3 и SiO2 (табл. 4.2).

Из таблицы следует, что в соединениях, имеющих плотную кри сталлическую упаковку и примерно равные молекулярные массы катионов, решающее влияние на плотность оказывают более низкая валентность катиона и высокое координационное число.

Таблица 4.2. Строение оксидов и их плотность

В основе формирования структуры металлов — совсем другие принципы, нежели структуры твердых тел с ковалентной связью. Каждый атом металла окружен столькими атомами, сколько ему позволяет окружающее пространство. Поэтому кристаллическая решетка металлоидов имеет так называемую плотноупакованную структуру.

Соединения одинакового химического состава, имеющие различную структуру, характеризуются, как правило, различной плотностью. Это связано с энергетическим состоянием вещества. Чем ниже значение внутренней энергии и выше устойчивость соединения, тем выше его плотность. Известно, что при поглощении энергии (например, тепловой) телом плотность его уменьшается. Покажем это на примере полиморфных превращений кварца. При нагревании кварца поглощенная тепловая энергия идет на перестройку его кристаллической. решетки: ?-кварц переходит в ?-кварц и далее — в тридимит, кристобалит и, наконец, в кварцевое стекло. При этом плотность, равная 2,65 г/см3 у -кварца, уменьшается до 2,25 г/см у кварцевого стекла.

Изменение плотности одного и того же соединения при изменении его структуры может быть представлено в виде схемы:

Ркрист. стр > Рам. крист. стр > Рам. стр или Ркристалла > Рситалла > Рстекла

Если рассматривать различные агрегатные состояния одного и того же соединения, то можно заметить:

Р тв.тела > Ржидк > Ргаза,

что вполне отвечает вышеизложенному. Исключение составляют лишь чугун и вода, у которых плотность в жидком состоянии больше плотности твердого тела.

3. Теплофизические свойства

3.1. Теплоемкость

Основные понятия, термины определения

Теплоемкость является мерой энергии, необходимой для повышения температуры материала. Эта энергия затрачивается на:

- увеличение энергии колебательного движения атомов относительно их равновесного положения в узлах решетки;

- повышение энергетического состояния некоторых электронов в решетке;

- изменение положения атомов (при образовании дефектов структуры или при перестройке структуры).

Теплоемкость вещества С — один из важнейших термодинамических параметров, значение которого используют для определения энтропии, энтальпии, энергии Гиббса и других величин. Например, согласно третьему началу термодинамики определение абсолютного значения энтропии S основано на измерении температурной зависимости теплоемкости в области низких температур и применении уравнения:

С = Т (dS/dТ),

где Т — абсолютная температура.

В термодинамической системе теплоемкость схематически расположена на отрезке прямой между термодинамическими потенциалами Т и S.

Величина С характеризуется отношением количества теплоты сообщенного телу (системе) в каком-либо процессе, к соответствующему изменению его температуры dТ:

С = Q/dT.

Отношение теплоемкости к массе тела m называют удельной теплоемкостью сm, а отношение теплоемкости к количеству вещества M в молях называют молярной теплоемкостью — сM:

сm = С/m [Дж/кг.К] или [ккал/кг.оС] — удельная теплоемкость;

см = С/М [Дж/моль.К] или [ккал/моль.оС] - молярная теплоемкость.

Теплоемкость зависит не только от начального и конечного состояний, но и от способа, которым был осуществлен переход между ними.

Обычно различают теплоемкость при постоянном давлении Сp (изобарический процесс) и при постоянном объеме Сv (изохорический процесс).

Различие двух процессов заключается в том, что при нагревании в первом случае (Р = соnst) часть теплоты идет на производство работы по расширению тела, а часть — на увеличение внутренней энергии, тогда как при нагревании во втором случае (V = соnst) вся теплота расходуется на увеличение внутренней энергии тела.

Сp = (dQ/dТ)p = (dH/dT)p; СV = (dQ/dT)v = (dU/dТ)v

где: Q - количество теплоты, Дж;

U - внутренняя энергия, Дж;

Т — абсолютная температура, К;

Н — энтальпия, Дж.

Разница между этими величинами у твердых тел невелика при низких температурах, однако, при высоких температурах она может быть значительной.

Теплоемкость зависит не только от способа сообщения телу тепла при нагревании, но и от макроструктуры, химического состава, агрегатного состояния тела.

Теплоемкость при нагревании и переходных процессах

Взаимосвязь тецлоемкость — температура достаточно сложна. Она объясняется основными положениями квантовой теории и характеризуется “температурой Дебая”. При этом теплоемкость пропорциональна температуре лишь при низких значениях температуры.

Теплоемкость резко возрастает при наличии процесса, называемого “переход: порядок — беспорядок”, т.е. при переходе тела из кристаллического состояния в аморфное. Следовательно, можно заключить, что теплоемкость расплава значительно превышает теплоемкость исходного кристаллического соединения. Наблюдения за процессами обжига и плавления керамических материалов наглядно показывают резкое уменьшение скорости подъема температуры в печи в период превращения, так как часть тепловой энергии затрачивается на переход кристаллической фазы в расплав.

При полиморфных превращениях изменение теплоемкости минералов также имеет место, хотя оно не так велико и носит скачкообразный характер.

Теплоемкость не зависит от строения кристаллической решетки, однако, увеличивается при ее разрушении.

Химический состав и теплоемкость

Наиболее отчетливо проявляет себя взаимосвязь «теплоемкость -химический состав» вещества.

Органические вещества имеют значительно большую удельную теплоемкость чем минеральные. Можно представить следующий условный ряд строительных материалов, различающихся химическим составом, по удельной теплоемкости кДж/кг°С при t = 25°С (в сторону увеличения):

железо - 045

сталь - 0,48

гранит - 0,65

стекло - 0, 74

бетон, цемент, известь - 0,84

строит. керамика - 0,88

известняк - 0,92

перлитофосфогелевые изделия - 1,05

пенопласты типа ПВХ - 1,26

пенополистирол - 1,34

пенополиуретан - 1,47

битумы, фенопласты - 1,68

древесина, древесное волокно - 2,30

вода - 4,18

Возникает вопрос: почему на нагрев единицы массы металла или бетона расходуется значительно меньше тепловой энергии, чем на нагрев полимеров или древесины? Видимо, за счет химической природы одни материалы способны передавать энергию, оставаясь устойчивыми, а другие — накапливать ее до момента их разрушения. Другими словами, неорганические вещества, атомное строение которых имеет волновой характер, являются проводниками тепла, а органические вещества — накопителями или изоляторами.

По этому критерию удельная теплоемкость «с» имёет взаимосвязь с теплопроводностью «?», температуропроводностью «а» и влияет на теплоусвоение материалов «b»:

с= ? / а ? ; b = ? ?. с. ?

Агрегатное состояние и теплоемкость

Агрегатное состояние тела влияет на его теплоемкость. Известно, что при переходе тела из твердого состояния в жидкое теплоемкость увеличивается, так как увеличивается внутренняя энергия тела:

Ср = (dН/dТ)

где Н — энтальпия (внутренняя энергия тела при Р = соnst)

Если сравнивать удельные теплоемкости разных веществ с одинаковыми химическими соединениями в различных агрегатных состояниях, то их значения будут очень близки. Главным фактором является химический состав. Приведем некоторые результаты сравнительной оценки:

- газы (за исключением инертных), такие, как воздух, кислород, водород и азот, имеют равную удельную теплоемкость с ~ 0,92 кДж/кг°С, т.е. как у известняка;

- жидкости ряда от бензола (с = 1,35 кДж/кг.оС — минимальное значение) до этилового спирта (с = 2,42 кДж/кг.оС — максимальное значение) имеют примерно такую же удельную теплоемкость, как органические полимерные материалы ряда от пенопластов (с = 1,26 кДж/кг.°С) до древесины (с = 2,30 кДж/кг.оС). У металлов даже крайние значения «с» для жидкости (ртуть) и твердого тела (свинец) равны и составляют всего 0,13 кДж/кг.°С.

Необходимо отметить аномально высокую удельную теплоемкость воды: с = 4,18 кДж/кг что следует учитывать при проектировании и расчете тепловых установок для сушки и тепловлажностной обработки строительных материалов. Увлажнение материалов приводит к значительному повышению их удельной теплоемкости и, как следствие, к увеличению расхода энергии при тепловой обработке.

Удельную теплоемкость влажных материалов рассчитывают по формуле

с = (со + св. 0,0IW) / (1+0,01W);

где со — удельная теплоемкость материала в сухом состоянии, кДж/кг°С;

св — удельная теплоемкость воды, кДж/кг°С;

W - влажность материала, % по массе.

Теплоемкость и ее практическое использование

Теплоемкость тела учитывают:

- при изучении строения веществ и их свойств;

- исследовании фазовых переходов и критических явлений;

- расчете суммарного количества примеси в веществе;

- определении тепловых эффектов химических реакций.

Выражая, например, Сp = (?H /?Т) в дифференциальной форме ?Сp = [d(?H)/dT], получаем уравнение Кирхгофа: общее изменение теплоемкости системы в результате реакции есть разность сумм теплоемкостей продуктов реакции и исходных веществ:

?Сp = ?n.?Cpпр- ?m.?Срив;

где n и m — количество исходных веществ и продуктов реакции.

Тепловой эффект реакции в зависимости от температуры определяется из уравнения

?H = ?H2 – ?H1 или ?H = ? ?Сp dT.

Уравнение Кирхгофа позволяет вычислить тепловой эффект реакции при любой температуре, исходя из известных величин теплового эффекта реакции при какой-либо температуре и изменения теплоемкости процесса. Чем больше ?Сp тем в большей степени температура влияет на тепловой эффект реакции.

Удельная теплоемкость с является также важнейшей характеристикой при расчете тепловых потерь ограждающих конструкций и составлении балансов тепловых агрегатов.

Следует заметить, что теплоемкость, так же, как и плотность, не зависит от анизотропии кристаллов.

3.2. Тепловое расширение

Основные понятия, термины, определения

Тепловое расширение — это физическое свойство вещества и материала, характеризующееся изменением размеров тела в процессе его нагревания.

С точки зрения термодинамики тепловое расширение следует рассматривать как изобарический процесс, при котором теплота при нагревании затрачивается на производство работы по расширению и на увеличение внутренней энергии тела. Количественно оно характеризуется изобарным коэффициентом расширения или коэффициентом объемного теплового расширения ?:

? = (1/ V)(dV/dТ)p,

где: V — объем тела (твердого, жидкого или газообразного);

Т — его абсолютная температура.

Практически значение ? определяется по формуле:

? = (V1 –V2)/V1(T2-T1);

где: Т1 и Т2 — температуры соответственно до и после нагревания;

V1 и V2 — объемы тела соответственно при Т1 и Т2.

Механизм теплового расширения твердых тел

Механизм теплового расширения твердых тел можно представить следующим образом. Если к твердому телу подвести тепловую энергию, то благодаря колебанию атомов в решетке происходит процесс поглощения им теплоты. При этом колебания атомов становятся более интенсивными, т.е. увеличиваются их амплитуда и частота. С увеличением расстояния между атомами увеличивается и потенциальная энергия, которая характеризуется межатомным потенциалом. Последний выражается суммой потенциалов сил отталкивания и притяжения. Силы отталкивания между атомами с изменением межатомного расстояния меняются быстрее, чем силы притяжения; в результате форма кривой минимума энергии оказывается несимметричной, и равновесное межатомное расстояние увеличивается. Это явление и соответствует тепловому расширению.

Тепловое расширение зависит от химических связей, типа структуры кристаллической решетки, ее анизотропии и пористости твердого тела.

Связь “тип химической связи — тепловое расширение”

Материалы с очень прочными химическими связями, такие, как алмаз, карбид кремния и другие соединения с ковалентной связью, имеют низкие коэффициенты термического расширения — КТР, поскольку при увеличении потенциальной энергии тел с ковалентной связью ее симметричность практически не нарушается и равновесное межатомное расстояние изменяется незначительно.

В соединениях с ионной связью, например МgО, NаСI и др., при повышении температуры потенциальную энергию определяет главным образом сила притяжения. В результате кривая межатомного потенциала становится асимметричной и увеличение межатомного расстояния, т.е. расширение, становится значительным.

КТР металлов из-за слабости химической связи обычно достаточно высок.

Высокомолекулярные соединения со слабыми ван-дер-ваальсовыми связями имеют очень высокий КТР (табл. 4.2.).

Таблица 4.2. Химические связи и тепловое расширение

№ п/п Тип материала Тип хим. связи Вещество KTPxl0-6C-1, при 25°С 1 Прир. минерал Ковалент-ная Алмаз -0,9 2 Керамика

Кордиерит 1,7 3

Муллит -5,0 4

Карбид кремния 5,6 5 Оксид Ионная Периклаз 13,5 6 Соль

Хлористый натрий 40 7 Металлы Металлическая Железо 11,6 8

Свинец 29,3 9

Цинк 39,7 10 Полимеры Ван-дер-ваальсовая Полиметил-метакрилат 50 11

Сложный полиэфир 55...100 12

Полиэтилен 120 Из таблицы видно, что КТР находится в прямой зависимости от прочности химической связи.

Влияние структуры материала на тепловое расширение

Эту зависимость следует рассмотреть в двух аспектах: на микроуровне (особенности строения — решетки и анизотропия кристаллов) и на макроуровне (влияние состояния твердой фазы и наличия пористости).

КТР тел кристаллической структуры значительно более высокий, чем тел такого же химического состава в аморфном состоянии. Так, КТР кварца примерно в 20 раз выше КТР кварцевого стекла. У более сложных по составу минералов, например альбита, при переходе в стеклообразное состояние также несколько уменьшается значение КТР.

Особенности строения кристаллической решетки сильно влияют на тепловое расширение кристаллических тел. У кристаллов с кубической решеткой тепловое расширение вдоль всех кристаллографических осей одинаково и изменение их размеров при изменении температуры симметрично. Следовательно, КТР, в данном случае линейный (a), оказывается у таких кристаллов однозначным в любом направлении.

У изотропных материалов средний коэффициент объемного термического расширения в ограниченном интервале температур связан с коэффициентом линейного температурного расширения ? и выражается соотношением: ? = 3?

У анизотропных кристаллов ? различен вдоль разных кристаллографических осей, причем при более высоких температурах кристалл становится симметричнее. Другими словами, при повышении температуры кристалла уменьшается его анизотропия, что связано с полиморфизмом, т.е. способностью кристалла при повышении температуры приобретать более устойчивую для данных условий форму. Особенно это отчетливо прослеживается при полиморфных превращениях кварца и диоксида циркония.

Наиболее выраженное анизотропное расширение наблюдается у веществ со слоистой кристаллической решеткой, у которых химические связи настолько сильно направлены, что расширения между слоями и в плоскости слоев отличаются более, чем на порядок (табл. 4.3.).

Таблица 4.3. Коэффициенты линейного температурного расширения некоторых анизотропных минералов

Минералы ? х 10-6, °С-1

перпендикулярно к с-оси параллельно с-оси Кварц (SiO2) 14 9 Корунд (А12О3) 8,3 9 Альбит [NaAl (Si3O8)] 4 13 Кальцит (СаСО3) -6 25 Графит (С) 1 27

У ярко выраженных анизотропных кристаллов коэффициент ? в одном из направлений может быть отрицательным, но в целом объеме он компенсируется и становится положительным, и тогда результирующий коэффициент объемного термического расширения, ? может быть очень низким. Такие материалы (например, кордиерит, титанат алюминия, алюмосиликаты лития и др.) обладают очень высокой термостойкостью, т.е. способностью многократно выдерживать без разрушения структуры резкие колебания температуры.

Фазовый состав и макроструктура материала оказывают существенное влияние на его КТР. Последний, в свою очередь, при изменении температуры определяет напряженное состояние структуры и, как следствие, прочностные характеристики материала.

Реально на границе двух фаз с разными КТР при изменении температуры одновременно возникают два вида напряжений: сжимающие, действующие на фазу с высоким ?, и растягивающие, действующие на другую фазу с меньшим ?. При напряжениях сверх некоторого критического значения появляются трещины. В поликристаллическом теле, имеющем много подобных контактов, как правило, появляется множество мельчайших трещин, которые не концентрируют напряжения, а релаксируют их.

Если поверхность контактов различных фаз велика и непрерывна, что имеет место в случае контакта керамического слоя с глазурью, то трещины из-за разности коэффициентов термического расширения слоев не образуются и релаксация не наступает. Тогда напряжения суммируются и происходит отрыв слоев. Во избежание этого явления производят расчет и подбор ? глазури по химическому составу с учетом ? черепка.

Пористость не влияет на ? в случае, если непрерывной средой является твердая фаза. Если материал состоит из слабосвязанных частиц и непрерывной средой являются поры, то ? в некоторой степени зависит от размера частиц и сил их сцепления и, следовательно, от величины пор.

4. 3. Теплопроводность

Основные понятия, термины, определения

Теплопроводность является физическим свойством материалов, связанным с переносом в них тепловой энергии за счет взаимодействия их мельчайших частиц (атомов, ионов, электронов, молекул).

Перенос тепловой энергии осуществляется непосредственно от частиц, обладающих большей энергией, к частицам с меньшей энергией и приводит к выравниванию температуры тела. Взаимодействие частиц происходит в результате непосредственного их столкновения, при перемещении или колебании.

Когда такие условия переноса тепловой энергии выполняются и такой вид переноса является доминирующим, соблюдается закон Фурье, согласно которому вектор плотности теплового потока пропорционален и противоположен по направлению градиенту температуры Т(grad Т):

Q = - ? grad Т;

где ? — коэффициент теплопроводности (теплопроводность), который не зависит от grad Т, а зависит от агрегатного состояния вещества, его атомно-молекулярного строения, состава, температуры, давления и других физических показателей.

Агрегатное состояние вещества и теплопроводность

Механизм переноса тепловой энергии в веществах, находящихся в различных агрегатных состояниях, неодинаков. В газах и жидкостях он осуществляется хаотически движущимися молекулами, образующими однородную среду, в твердых телах — за счет взаимодействия соседних атомов решетки.

Однако внутри каждого вида агрегатного состояния имеют место свои особенности переноса энергии, которые, в свою очередь, зависят от структуры и свойств конкретного вещества.

В газах механизм переноса энергии и величина теплопроводности ? во многом зависят от расстояния между молекулами, т.е. определяются длиной их пробега l. В разреженных газах, когда l сравнимо с расстоянием между стенками L, ограничивающими объем газа, молекулы чаще сталкиваются со стенками, чем между собой. В результате происходит не направленный перенос тепла, а лишь теплообмен между молекулами в газовой среде. Следовательно, не соблюдается закон Фурье.

Если имеет место условие L >> l >> d, где d — диаметр твердой cферической молекулы газа, то согласно кинетической теории газов для теплопроводности идеальных газов справедливо следующее выражение:

? = 1/3 ?сv.?.l;

где ? — плотность газа, моль/м3;

сv - удельная теплоемкость газа при V=соnst, Дж/моль°С;

? — средняя скорость движения молекул, м/с;

1 — средняя длина свободного пробега частиц, м.

Кроме того, в идеальных газах теплопроводность ? связана еще и с вязкостью ? соотношением:

? = 5/2 ?. сv

В плотных (реальных) газах расстояние между молекулами сравнимо с размерами самих молекул, а кинетическая энергия движения молекул и потенциальная энергия межмолекулярного взаимодействия — величины одного и того же порядка. В связи с этим перенос энергии столкновениями происходит значительно интенсивнее, чем в разреженных газах, и теплопроводность значительно выше.

В реальных газах зависимость теплопроводности от температуры и давления очень сложна, хотя при их увеличении теплопроводность газов растет.

Теплопроводность ? газов зависит от молекулярной массы М и количества атомов в молекуле n. При прочих равных условиях между ? и М существует следующая зависимость:

? = 1/M0,5

Поэтому некоторые хлористые соединения, например фреоны, плохо проводят тепло.

Увеличение количества атомов в молекуле повышает теплопроводность в среднем на 2% на каждый атом. По этой причине бутан (n = 14) значительно более теплопроводен, чем сернистый газ (n=3), при примерно равных значениях молекулярных масс.

В жидкостях межмолекулярное расстояние еще меньше, чем в реальных газах. Плотность жидкости высока, а молекулы, хотя и подвижны, но не так хаотичны, как в газах, и перенос тепловой энергии осуществляется практически между слоями жидкости. Скорость такого распространения близка скорости распространения звука в жидкой среде ?зв, а теплопроводность жидкости описывается уравнением:

? = ?.сv. ?зв.l;

Как видно из этого уравнения, теплопроводность жидкости ? тем больше, чем выше ее удельная теплоемкость сv и плотность ?. При повышении температуры жидкости расстояние между молекулами увеличивается, жидкость расширяется, а ее теплопроводность снижается. Исключения составляют вода, тяжелая вода и глицерин.

Химический состав жидкости влияет на теплопроводность через изменение температуры кипения. Чем ниже температура кипения жидкости, тем выше скорость уменьшения ее теплопроводности при нагревании.

В твердых телах перенос тепловой энергии осуществляется с помощью двух основных механизмов:

- за счет взаимодействия между тепловыми упругими колебаниями решетки;

- за счет движения электронов и столкновения их с атомами.

В большинстве случаев теплопроводность твердых тел ? складывается из теплопроводности решетки ?реш и теплопроводности электронами ?эл т.е. условно ? = ?реш + ?эл.

В неорганических, неметаллических, тугоплавких материалах (керамика, природные каменные материалы, бетоны и др.) количество свободных электронов, которые могли бы двигаться через кристаллическую решетку и осуществлять перенос энергии, недостаточно и теплота в основном передается за счет колебаний решетки.

Величина теплопроводности зависит от характера колебаний решетки. При гармонических колебаниях сопротивление переносу энергии отсутствует и теплопроводность может достигать огромных значений. Однако в реальных кристаллах колебания имеют ангармонический характер, который способствует частичному затуханию упругих тепловых колебаний и значительному снижению теплопроводности.

В теории теплопроводности предполагается, что колебания нормального вида квантуются и по аналогии с фотонами в теории света эти кванты называют фононами, а механизм переноса тепловой энергии — фононной теплопроводностью.

Таким образом, у твердых неметаллических тел перенос тепловой энергии осуществляется за счет взаимодействия фононов, в результате их движения, сталкивания, рассеивания и т.п. По аналогии с кинетической теорией газов фононную теплопроводность твердых тел можно представить как

? = с ? l;

где l – длина свободного пробега фононов.

с — удельная теплоемкость тела;

? — средняя скорость фононов;

В металлах перенос тепловой энергии определяется движением и взаимодействием электронов проводимости, так как решетчатая фононная составляющая теплопроводности исчезающе мала и ?эл>> ?реш.

Явление переноса тепла в полупроводниках сложнее, чем в диэлектриках и металлах, так как для них существенны как решеточная, так и электронная составляющие теплопроводности. Кроме того, здесь теплопроводность зависит от теплопроводности примесей и многих других факторов.

Влияние состава, структуры и параметров состояния на фононную теплопроводность твердого тела (кристалла)

Анализируя механизм переноса тепловой энергии в неорганических, неметаллических материалах (кристаллах), заметим, что основными факторами, влияющими на величину теплопроводности, являются:

- теплоемкость

- средняя скорость движения частиц (фононов);

- средняя длина свободного пробега частиц (фононов);

- степень гармоничности (ангармоничности) колебания решетки.

По изменениям этих параметров можно объяснить закономерности влияния состава, структуры, температуры и давления на теплопроводность того или иного тела.

Рассмотрим влияние структуры на теплопроводность кристаллов. Напомним, что структура кристаллов определяется типом химических связей и строением кристаллической решетки. Состав и структура кристаллов тесно взаимосвязаны, поэтому и оказывают совместное влияние на теплопроводность.

Известно, что строение кристаллической решетки и характер ее колебания влияют на степень отклонения гармоничности колебаний.

Ангармоничность обусловливается прежде всего различием атомных масс ионов решетки. Это различие вызывает так называемое рассеяние колебания с уменьшением средней длины пробега частиц. В результате этого теплопроводность уменьшается. Так, у оксидов и карбидов с легкими катионами, атомная масса которых близка соответственно атомной массе кислорода и углерода, теплопроводность оказывается более высокой, чем у оксидов и карбидов с тяжелыми катионами.

Расположение атомов в решетке влияет на образование осей симметрии и, как следствие, на анизотропию кристаллов. Теплопроводность в отличие от теплоемкости является анизотропным свойством; для многих кристаллов ее величина ? почти в 2 раза больше при потоке тепла параллельно оси симметрии, а не перпендикулярно к ней.

У кристаллов с простым строением решетки термическое рассеяние мало, а l велико, поэтому их теплопроводность высокая.

Кристаллы с более сложным строением решетки в общем имеют большее рассеяние тепловых упругих волн, увеличивающее ангармоничность ее колебания и, следовательно, пониженную теплопроводность.

Введение второго компонента в основной кристалл (твердые растворы) вызывает:

- усложнение строения кристаллической решетки;

- образование дополнительных центров рассеяния и, как следствие, уменьшение средней длины свободного пробега частиц.

В результате совместного влияния этих факторов теплопроводность нового соединения оказывается значительно ниже теплопроводностей его составляющих. Например, глинозем (Аl2O3) и периклаз (МgO) имеют примерно равные, но очень высокие значения теплопроводности, порядка 30. . .35 Вт/м.К, в то время как теплопроводность алюмомагнезиальной шпинели (МgO.А12O3) значительно ниже — порядка 13...15 Вт/м.К. Другой пример: глинозем (А12О3) и кремнезем (SiO2) — простые компоненты, а муллит (3 А12О3. 2SiO2) — сложное соединение. В обоих случаях примесные компоненты МgO и SiO2 значительно уменьшают теплопроводность соединения за счет усложнения строения кристаллической решетки и уменьшения средней длины свободного пробега частиц.

Взаимосвязь температура и теплопроводность твердого тела сложна и неоднозначна. Она определяется характеристической “температурой Дебая” (температура Дебая – интервал от 100 до 1000о К), которая устанавливает для каждого вещества температурную границу, выше которой не улавливаются квантовые эффекты, и фононовая теплопроводность теряет физический смысл.

Для большинства обжиговых и плавленых материалов эта температурная граница находится в пределах 100... 1000 К. В таком интервале температур составляющие формулы фононной теплопроводности, удельной теплоемкости и скорости распространения фононов практически остаются неизменными, а средняя длина свободного пробега фононов, с учетом теории теплоемкости, должна быть обратно пропорциональной абсолютной температуре, хотя имеются многочисленные исключения.

Итак, с увеличением температуры кристалла средняя длина свободного пробега частиц сокращается, ангармоничность растет и теплопроводность, уменьшается.

При температурах выше 1500оС теплопроводность огнеупорных оксидов обычно увеличивается, так как составляющая переноса тепла излучением значительно превосходит фононную.

Влияние давления на теплопроводность твердых тел выражается линейной зависимостью. Для многих минералов и металлов теплопроводность растет с увеличением давления.

Теплопроводность некристаллических тел

Тела с сильно разупорядоченной кристаллической решеткой, а также с полностью некристаллическим строением имеют очень низкую среднюю длину свободного пробега фононов, которая находится в пределах межатомного расстояния (порядка 3.. .5 ?). Этим в основном объясняется низкая теплопроводность стекол и других аморфных тел и ее слабая зависимость от температуры.

Данные по теплопроводности стекол, приведенные в табл. 4.3., являются типичными для некристаллических твердых тел. Как видно из таблицы, их теплопроводности очень близки, хотя состав стекла все же оказывает некоторое влияние. Например, стекла с высоким содержанием бария или свинца имеют теплопроводность ниже, чем натрий, калий, силикатные стекла.

Таблица 4.3. Теплопроводность различных твердых тел

Тип мате- Вещество Теплопроводность, риала Вт/м°С Минералы Корунд (А12О3) -30 Периклаз (MgO) -36 Шпинель (MgOAl2O3) -15 Кварц (SiO2) 0,63 Муллит (3Al2O3-2SiO2) 5,8 Графит (С) 180 Стекла Кварцевое стекло 1,72 Натрий-кальций-силикатное стек- ло 1,44 Металлы Медь (Си) 397 АЛЮМИНИЙ (А1) 230 Железо (Fe) 73,2 Титан (Ti) 4,1 Полимеры Полиэтилен 0,34 Полистирол 0,084 Поливинилхлорид 0,15 Полиметилметакрилат 0,16

Стекловидная фаза, которая обычно выполняет роль связки в традиционной керамике, имеет теплопроводность, близкую к теплопроводности натрий, калий, силикатного стекла.

Природные и синтетические полимеры ввиду особого строения макромолекул обладают самой низкой теплопроводностью из твердых веществ и соединений (см. табл. 4.3), потому что такие легкие элементы, как С, О, Н и др., образуют ковалентную связь, и можно предположить высокую теплопроводность их молекул. Однако из-за слабости и неоднородности молекулярных связей рассеяние фононов оказывается значительным, а теплопроводность низкой.

В зависимости от агрегатного состояния веществ и особенностей переноса ими тепловой энергии условный ряд тел по величине их теплопроводности (по мере возрастания) может иметь следующий вид:

газы <<полимеры<<жидкости<<стекла<<кристаллы<<металлы,

Существенное изменение теплопроводности тел при изменении их состава и температуры и проявление в различных интервалах температур разных механизмов переноса тепла усложняет анализ этого явления ввиду значимости каждого фактора и их взаимосвязей.

Следует заметить, что для каждого агрегатного состояния тела имеется параметр (критерий), определяющий интервал состояния тела, за пределами которого его свойства резко изменяются. Такими параметрами (критериями) являются:

- для газа — соотношение между суммарным объемом частиц и общим объемом, занимаемым газом, т.е. величина, которая определяет его плотность и, следовательно, теплопроводность;

- жидкости — температура кипения, определяющая скорость изменения теплопроводности при изменении температуры;

- кристаллических тел — температура Дебая, которая определяет эффективные параметры упругих колебаний кристаллической решетки, обеспечивающих перенос тепловой энергии.

Теплопроводность гетерогенных систем

В строительном материаловедении теплопроводность ? учитывается при расчете ограждающих конструкций для обеспечения:

- тепловой изоляции зданий и сооружений

- тепловой защиты поверхностей тепловых агрегатов и трубопроводов;

- термостойкости огнеупорных материалов и специальных составов;

- хладоизоляции.

Поскольку ограждающие конструкции по своему назначению многофункциональны, составляющие их материалы, как правило, являются гетерогенными пористыми телами. Общая, или эффективная теплопроводность таких систем определяется теплопроводностями твердых и газовых фаз:

? = ?тв + ?газ

Однако, учитывая тот факт, что теплопроводность является векторной величиной, ее суммарное значение для гетерогенных систем зависит не только от количественного соотношения фаз, но и от их взаимного расположения, характера пограничного слоя, степени непрерывности или дискретности фаз и т.д., т.е. от структуры и текстуры материала.

Чтобы оценить эффективную теплопроводность системы, рассмотрим влияние каждой составляющей.

Для оценки зависимости теплопроводности системы от сочетания твердых фаз приведем в качестве примера три упрощенных варианта сочетания твердых фаз двухфазной системы:

- параллельное расположение слоев (фаз), свойственное слоистой структуре материалов (рис.4.4, а);

- основная фаза является непрерывной, а другая - в виде отдельных включений, что соответствует структуре стеклокристаллических материалов (рис.4.4. б);

- основная фаза является дискретной, соответствует структуре, подобной конгломератам, например бетонам, (рис.4.4. в).

Рис. 4.4. Схемы распределения фаз:

а - параллельными слоями; б - с непрерывной основной фазой;

в - с дискретной основной фазой; к1 - основная фаза, к2 - вторая фаза;

q1, q2 - направления теплового потока

Вариант 1 Слоистая структура (см. рис. 4.4. а)

Если тепловой поток q направлен вдоль слоев, то ? рассчитывается так же, как и электропроводность цепи с параллельно включенными сопротивлениями. При одинаковом ?Т во всех слоях большая часть тепла переносится через фазу с более высокой теплопроводностью. Среднюю теплопроводность можно рассчитать по формуле:

?ср = V1 ?1 + V2 / ?2

где V1 и V2 — объемные доли каждой фазы.

В этом случае общая теплопроводность системы определяется в основном фазой с более высокой теплопроводностью, и если ?1 >> ?2, то ?ср= V1 ?1.

Если тепловой поток направлен перпендикулярно к плоскости слоев, то имеет место случай, аналогичный случаю электрической цепи с последовательным включением сопротивлений. Тепловой поток, проходящий через все слои, остается величиной постоянной, тогда как ?Т по слоям различна, и общая теплопроводность определяется соотношением:

1 /?ср = V1/?1 +V2/ ?2 или ?ср = ?1 ?2/( V1 ?1 + V2 ?2)

В этом случае общая теплопроводность определяется в основном фазой с меньшёй теплопроводностью, и если ?1 >> ?2, то ?ср~~ ?2/ V2.

Вариант 2. Структура с непрерывной основной фазой (см. рис.4.4. 6).

Если вторая фаза дискретна и по величине не превышает 10%, то общая (средняя) теплопроводность системы определяется теплопроводностью непрерывной фазы.

Вариант З. Структура с дискретной основной фазой (см. рис.4.4. в).

Если содержание второй фазы превышает 10%, то главным фактором, определяющим теплопроводность системы, является соотношение фаз, и условно непрерывной фазой становится большая из них. Общую теплопроводность системы определяют исходя из соотношений Максвелла-Эйкена для непрерывной среды с ?1 и диспергированной в нее фазой с ?2:

Если ?1 >> ?2 , то ?ср = ?1(1- V2)/(1+ V2).

Если ?1<< ?2, то ?ср = ?2(1 + 2 V2)/(1 - V2).

Как влияет газовая фаза на теплопроводность системы? Выше упоминалось о том, что гетерогенные системы (неорганические, не металлические материалы), как правило, имеют значительную газовую составляющую, которая колеблется от доли процента у плотных природных каменных материалов до 99% у искусственных полимерных материалов.

Тот факт, что с увеличением газовой фазы или пористости теплопроводность системы уменьшается, не вызывает сомнения. Например, теплопроводность воздуха примерно в 20 раз меньше теплопроводности керамического черепка. Однако необходимо выделить два момента:

- при увеличении пористости теплопроводность системы уменьшается за счет сокращения объема более теплопроводной твердой фазы, что не требует доказательства;

- при увеличении пористости теплопроводность системы снижается еще и за счет уменьшения теплопроводности самой твердой фазы.

Такая закономерность объясняется тем, что поры, образуя новые поверхности в плотной структуре, становятся центрами рассеяния, примерно такими, как дефекты решетки, границы зерен примеси и пр. При этом уменьшается средняя длина свободного пробега частиц и снижается фононная теплопроводность системы.

Если пренебречь влиянием границ зерен и другими факторами, а также теплопроводностью самих пор (т.е. газовой составляющей) и допустить, что поры равномерно распределены в непрерывной среде, то можно получить уравнение Максвелла-Эйкена, показывающее влияние пористости на фононную теплопроводность гетерогенной системы:

? = ?ср(1-П)(1+0,5П);

где ?, ?ср — соответственно теплопроводности системы и твердой фазы в абсолютно плотном состоянии;

П — пористость системы, ед.

Приведенное соотношение теплопроводность — пористость условию для непрерывной твердой фазы с изолированными порами. Однако если непрерывной является газовая фаза, как в порошкообразных и волокнистых материалах, то необходимо учитывать и ее теплопроводность, которая определяется конвективным теплопереносом а, а при температурах выше 600°С — еще и излучением «кч».

При расчете эффективной теплопроводности с учетом конвекции и излучения определяющими факторами являются размер пор и температура. Так, влияние переноса теплоты излучением на теплопроводность пор пропорционально их условному диаметру d и кубу температуры, Следовательно, наличие крупных пор приводит к повышению общей теплопроводности системы, особенно при высокой темпера туре, в то время как мелкие поры являются хорошим препятствием для переноса теплоты.

Следует, однако, снова упомянуть о том, что на теплопроводность влияет не только размер пор, но и непрерывность поровой среды. Причем влияние последнего фактора значительнее.

Из опыта применения высокотемпературной теплоизоляции известно, что в сыпучих и волокнистых материалах, где непрерывной средой является воздух, размер пор, а, следовательно, и размер зерен или толщина волокон практически не оказывают влияния на теплопроводность материалов при низких температурах.

При высоких температурах размер зерен становится значимым параметром, так как с увеличением конвективной составляющей теплопереноса резко возрастает фактор излучения. Поэтому для высокотемпературной изоляции наиболее эффективными являются мелкозернистые или мелкопористые материалы. Теплопроводность же самой твердой фазы или зерна в данном случае имеет второстепенное значение.

При высоких температурах размер зерен становится значимым параметром, так как с увеличением конвективной составляющей теплопереноса резко возрастает фактор излучения. Поэтому для высокотемпературной изоляции наиболее эффективными являются мелкозернистые или мелкопористые материалы. Теплопроводность же самой твердой фазы или зерна в данном случае имеет второстепенное значение.

4. Плавление материалов

Основные понятия, термины, определения

Температура плавления (Тпл) - параметр состояния твердого тела, характеризующий границу его устойчивости. Другими словами, это температура равновесного фазового перехода твердого тела в жидкость при постоянном внешнем давлении.

Наличие определенной температуры плавления - важный признак кристаллического строения тел. По этому признаку их легко отличить от аморфных твердых тел, не имеющих фиксированной температуры плавления.

Механизм плавления твердого тела

Механизм перехода твердого тела в жидкость можно объяснить изменением энергетического состояния твердого тела при нагревании. При подведении к кристаллическому телу теплоты увеличивается энергия (амплитуда) колебаний его атомов, что приводит к повышению температуры и способствует возникновению в кристалле различных дефектов. Постепенный рост числа дефектов и их скопление характеризуют стадию "предплавления" (рис. 4.4.). С Достижением температуры плавления в кристалле создается критическая концентрация дефектов.

Начинается плавление, т.е. кристаллическая решетка распадается на легкоподвижные субмикроскопические фрагменты. Подводимая в этот период теплота идет не на нагрев тела, а на разрыв межатомных связей и нарушение в кристалле дальнего порядка. Когда этот процесс завершится, твердое тело полностью превратится в жидкость. Температура, при которой возникает такое явление, есть температура плавления.

С точки зрения термодинамики, при температуре плавления достигается равновесное состояние, т.е. состояние, при котором выравниваются энергии Гиббса твердой и жидкой фаз.

Рис. 4.4. Стадии фазового перехода твердого тела в жидкость при

нагревании

Для обычных условий, без учета сверхвысоких давлений, также влияющих на Тт, следует считать температуру плавления одной из характеристических констант вещества.

Состав и температура плавления

Поскольку строительное материаловедение в основном рассматривает поликристаллические тела и сложные кристаллы, вызывает интерес влияние составляющих компонентов на температуру их плавления.

Это влияние представляется многофакторным и чрезвычайно сложным, так как при нагревании и плавлении даже простейшей двухкомпонентной системы необходимо рассматривать следующие возможные варианты:

-постоянство состава при фазовом переходе (конгруэнтное

плавление);

-образование нового соединения (инконгруэнтное плавление);

- разложение;

- образование твердых растворов, т.е. изоморфных смесей смешанных кристаллов;

- проявление полиморфизма одним или всеми компонентами.

Вещественный состав и температура плавления. Различные химические соединения имеют разную температуру плавления, что вполне очевидно. Однако во многих случаях прослеживается определенная закономерность изменения температуры плавления в зависимости от типа соединений. Так, для соединений одних и тех же металлов температура плавления повышается в последовательности металлы < оксиды < нитриды < карбиды и т.д.

Такую закономерность можно объяснить различием у этих соединений типов химических связей и слабостью или прочностью их структуры (табл. 4.5.).

Тип химической связи и температура плавления материала

Этот фактор является основным при определении порядка (уровня) температуры плавления различных веществ и соединений. Отмечена тенденция повышения температуры плавления с усилением химических связей в следующем порядке:

молекулярные кристаллы < кристаллы с металлической связью < ионные кристаллы <кристаллы с ковалентной связью.

Низкая температура плавления молекулярных кристаллов, к которым можно отнести органические полимеры, объясняется тем, что, несмотря на ковалентный тип связи между частицами, образующими молекулы, межмолекулярное взаимодействие осуществляется слабыми ван-дер-ваальсовыми силами (табл. 4.4.).

Таблица 4.5. Взаимосвязь тип соединения - тип химической связи – температура плавления

Соединения Химическая связь Т °С Металлы Оксиды Нитриды Карбиды

А1 Металлическая 659 А12О3 Ковалентная 2050 A1N Ковалентно-ионная 2400 Аl4Сз Тоже 2800 Ti Металлическая 1668 TiO2 Ионная 1870 TiN Ковалентно-ионная 1950 TiC Тоже 3140 Si Ковалентная 1417 SiO2 Тоже 1710 Si2N4 »» -2000 SiC »» -2830

Структура твердого тела и температура плавления

Напомним, что структура есть результат совокупного действия химических связей, обеспечивающих единое целое. Поэтому прочность структуры твердого тела зависит от прочности химических связей, так же, как прочность здания зависит от того, из каких кирпичиков оно построено и каким раствором связаны эти кирпичики.

У различных групп веществ и соединений для создания оптимальной структуры имеются определенные условия и особенности. Так, для класса оксидов металлов одной и той же группы или с одинаковой валентностью металла можно отметить следующие особенности:

- температура плавления оксида тем выше, чем выше координационное число (к.ч.) катиона;

- температура плавления оксида снижается по мере уменьшения к.ч. металла по отношению к кислороду;

- температура плавления оксида снижается при уменьшении к.ч. кислорода при неизменном к.ч. ионов металла, равном 6 (пример: к.ч. MgO (2800°С) > к.ч. А12О3(2050°С) > к.ч. ТiO2(1840°С);

- температура плавления оксида тем выше, чем выше плотность

упаковки ионов (т.е. выше к.ч. ионов) и выше прочность химической

связи.

Взаимосвязь "температура плавления - тепловое расширение "

Анализ механизмов теплового расширения и плавления, а также влияния на них состава, химических связей и структуры тела выяв ляет в указанных процессах много общего. Особенно это относится к влиянию типа химической связи и ее прочности на интенсивность и результат рассматриваемых процессов.

С увеличением прочности химической связи КТР тел уменьшается (см. табл. 4.3), а их температура плавления растет (см. табл.4.8). Эта взаимосвязь свидетельствует о том, что температура плавления может служить косвенной характеристикой процесса теплового расширения кристаллических тел.

Лекция 5. ДЕФОРМАТИВНЫЕ И ПРОЧНОСТНЫЕСВОЙСТВА МАТЕРИАЛОВ

1. Деформативные свойства

Основные понятия, термины, определения

Деформативные свойства материалов проявляются при воздействии на них механических и термических нагрузок, в результате которых в материале возникают различного рода деформации, напряженное состояние и, наконец, наступает разрушение.

Деформация — это нарушение взаимного расположения множества частиц материальной среды, которое приводит к изменению формы и размеров тела и вызывает изменение сил взаимодействия между частицами, т.е. возникновение напряжений. Заметим, что чаще деформации вызывают напряжения, и поэтому, как правило, строят графики зависимости напряжений от деформаций, а не наоборот.

Простейшими элементами деформации являются относительное удлинение и сдвиг.

Относительное удлинениё «?» стержня или материального волокна среды длины «l» есть отношение изменения (l - lo) к первоначальной длине: ? = (l-lo)/lo.

Сдвигом называется изменение угла у между элементарными волокнами, исходящими из одной точки и образующими прямой угол до деформации (см. рис. 5.1).

В твердых телах деформация называется упругой, если она исчезает после снятия нагрузки, и пластической, если она после снятия нагрузки не исчезает; если она исчезает не полностью, то называется упругопластической, если она изменяется во времени и обратима, то называется вязкоупругой.

Разрушение — это ослабление взаимосвязи между частицами при нарушении сплошности структуры.

Различают хрупкое, т.е. мгновенное (без деформации) и пластическое (с деформацией) разрушение твердого тела.

Таким образом, к этой группе свойств можно отнести упругость, пластичность, хрупкость, вязкость, прочность и твердость.

Упругость

Упругость — свойство изменять форму и размеры под действием нагрузок и самопроизвольно восстанавливать исходную конфигурацию при прекращении внешних воздействий.

Упругость тел обусловлена силами взаимодействия атомов, из которых они построены. В твердых телах при температуре абсолютного нуля и отсутствии внешних воздействий атомы занимают равновесное положение, в котором сумма всех сил, действующих на каждый атом со стороны остальных, равна нулю, а потенциальная энергия атома минимальна.

Под влиянием внешних воздействий атомы смещаются относительно своих равновесных положений, что сопровождается увеличением потенциальной энергии тела на величину, равную работе внешних сил на изменение формы и объема тела. В результате возникают напряжения, величины которых пропорциональны произведенной деформации.

Пока отклонения межатомных расстояний и валентных углов от их равновесных значений малы, они пропорциональны силам межатомного взаимодействия, подобно тому, как удлинение или сжатие пружины пропорционально приложенной силе. Поэтому упругое тело можно представить как совокупность атомов-шариков, соединенных пружинами, ориентации которых фиксированы другими пружинами (рис. 5.1), а константы упругости пружин модели подобны модулю упругости материала.

Рис. 5.1. Шариковая модель элементарной ячейки кубического кристалла:

а - в равновесии при отсутствии внешних сил;

б - под действием внешних сил и касательных напряжений

Поле снятия нагрузки конфигурация упругого деформированного тела с неравновесными межатомными расстояниями и валентными углами оказывается неустойчивой и самопроизвольно возвращается в равновесное состояние. Запасенная в теле избыточная потенциальная энергия превращается в кинетическую энергию колеблющихся атомов, т.е. в теплоту.

Константы упругости

Количественно упругость характеризуется константами, свойственными каждому материалу. При этом необходимо учитывать, что большинство свойств, кроме плотности и теплоемкости, связано с анизотропией структуры. Упругость является ярко выраженным анизотропным свойством. Поэтому следует различать упругость кристаллов и анизотпропных материалов и упругость изотропных тел.

Поликристаллические тела и материалы в целом изотропны, анизотропия их свойств проявляется только в результате формования или обработки, например прессования, штампования, прокатки, уплотнения и т.п. Таким образом, формируется анизотропия свойств керамической плитки, черепицы, стального листа и т.д. В дальнейшем рассматривается упругость только изотропных свойств, для которых не применимы представления об ориентированных кристаллографических осях и пр.

С учетом вышеизложенного для большинства природных и искусственных материалов (горные породы, керамика, бетон, металлы и т.д.) при малых деформациях зависимости между напряжениями «?» и деформациями «?» можно считать линейными (рис. 5.2) и описывать обобщенным законом Гука:

? = Е?,

где Е — модуль упругости (модуль Юнга).

Подобным образом напряжение сдвига «?» прямо пропорционально относительной деформации сдвига или углу сдвига у(рис. 5.3):

? = G . у

где G — модуль сдвига.

о.

Рис. 5.2. Классическая зависимость напряжение — деформация:

А — керамики; В — металлов; С — полимеров

Рис. 5.3. Упругая деформация твердого тела при сдвиге

Удлинение образца при растяжении сопровождается уменьшением его толщины (рис. 5.4). Относительное изменение толщины ?l/l к относительному изменению длины ?d/d называется коэффициентом Пуассона «?» или коэффициентом поперечного сжатия:

? = (?l/l) / (?d/d).

Рис. 5.4. Упругая деформация твердого тела при растяжении

Если при деформации тела его объем не изменяется, а это может иметь место только при пластическом или вязком течении, то ? = 0,5. Однако, практически, эта величина значительно ниже теоретического показателя и для разных материалов она различна. Упругие материалы (бетон, керамика и др.) имеют невысокие значения коэффициента Пуассона (0,15-0,25), пластичные (полимерные материалы) — более высокие (0,3-0,4). Это объясняется зависимостью между силами притяжения и отталкивания и изменением межатомного расстояния при деформации.

Модуль Юнга

Модуль Юнга, или модуль продольной деформации Е показывает критическое напряжение, которое может иметь структура материала при максимальной ее деформации до разрушения; имеет размерность напряжений (МПа).

Е =?р/?;

Где: ?р – критическое напряжение.

У поликристаллических материалов обычно наблюдаются отклонение от линейной ? = ?(?,), не связанное с энергией кристаллической решетки, а зависящей от структуры материала. Для оценки упругих свойств таких материалов применяют два модуля упругости: касательный Е = tg? и секущий V= tg?, который называют модулем деформаций (рис. 5.5).

Рис. 5.5. Схематическое изображение деформации огнеупоров:

а — кривая деформации; б — точка разрушения;

?; — предельное напряжение при разрушении; ? — деформация

Величина модуля упругости двухфазной системы является средней между величинами модулей упругости каждой из фаз, и аналитическое выражения для ее нахождения аналогичны тем, что используются при различных значениях линейного КТР:

Е = Е1V1 + E2V2,

где V1 и V2 — относительные объемные доли первой и второй фаз.

Это соотношение используется при разработке стеклопластиков, т.е. пластмасс, армированных стекловолокном. Е стекловолокна (~7.104 МПа) велик по сравнению с Е пластмасс (Е = 0,7.104 МПа). Поэтому даже при низкой объемной доле стекловолокна в композиции на него как на более прочный компонент приходится большая часть общей нагрузки.

Пористость и модуль Юнга

Увеличение пористости структуры снижает ее модуль упругости, так как пористость представляет собой вторую или п-ю фазу с минимальным модулем упругости. Количественно эта зависимость представляется достаточно сложной, так как кроме суммарного объема пор необходимо учитывать их форму, непрерывность, извилистость и пр. Если принять, коэффициент Пуассона ? равным 0,3, то величина модуля упругости пористого тела в случае наличия замкнутых пор в непрерывной среде достаточно точно может быть определена по следующему эмпирическому уравнению:

Е = Ео (1-1,9П+0,9П2),

где Е и Ео — модули упругости пористого и абсолютно плотного тела;

П — относительная пористость, ед.

Если в пористых материалах пространство пор непрерывно, а твердые частицы могут смещаться относительно друг друга, то влияние пористости оказывается более значительным, чем в результате определения по приведенному уравнению.

Термическое расширение и модуль упругости

Кристаллические тела с высоким КТР имеют, как правило, низкий модуль упругости. С повышением температуры расстояние между атомами увеличивается также за счет термического расширения, и упругая составляющая деформации несколько снижается, уменьшая напряженное состояние и, как следствие, модуль упругости. При высоких температурах упругая составляющая понижается значительно. Наконец, она становится настолько малой, что тело теряет свои упругие свойства, т.е. переходит из состояния неустойчивого равновесия в равновесное состояние, в котором величина напряжения и силы межатомного взаимодействия зависят только от температуры.

В материаловедении такое состояние, называемое пиропластическим, и является необходимым условием для формования (ковка, црокат, горячее прессование, термопластичное формование и пр.) различных материалов и изделий.

Пластичность

Пластичность (от греч. р1аstcos — податливый) — свойство твердых тел и материалов деформироваться (изменять свою форму и размеры) без нарушения сплошности структуры под действием внешних сил и сохранять часть деформации после прекращения действия этих сил. Такие сохраненные (необратимые или остаточные) деформации часто называют пластическими.

Все реальные твердые тела, даже при малых деформациях, в большей или меньшей степени обладают пластическими свойствами, т.е. наряду с упругими деформациями также имеют место пластические. Соотношения между двумя противоположными видами деформации для различных материалов неодинаковы. В керамике это соотношение в пользу упругой деформации, в полимерах — в пользу пластической. По этому показателю условный ряд материалов с повышением доли пластической деформации может быть представлен следующим образом:

керамика ? метал ? высокомолекулярные соёдинения.

Это соотношение зависит от многих факторов, в том числе от структуры твердого тела. Например, в отформованном глиняном сырце доля упругой деформации невелика по сравнению с пластической. В высушенном глиняном образце доля пластической деформации значительно уменьшилась, а в спеченной керамике эта доля ничтожна. Это объясняется так: под влиянием температурных воздействий структура глиняного сырца претерпела кардинальные изменения: высокодисперсная коллоидная система превратилась в пористую стеклокристаллическую структуру с высоким модулем упругости.

Заметим, что при нагружении любое твердое тело можно считать упругим, т.е. не проявляющим заметных пластических деформаций, до тех пор, пока нагрузка не превысит некоторого предела, после которого часть деформаций становится необратимой. Напряженное состояние этого момента называется пределом текучести ?т. После этого предела линейный характер взаимосвязи напряжение — деформация нарушается, в дальнейшем он может восстановиться, но в другом соотношении ?/?. При пластической деформации, сопровождающейся нарушением связности структуры, наступает разрушение, характеризующееся резким падением напряжения Пограничное состояние между пластической деформацией и разрушением называется предельным напряжением структуры ?пр, которое численно равно пределу прочности Rпр твердого тела.

Из графика (рис. 5.6) следует, что при повышении нагрузки до предела текучести ?т проявляются только упругие деформации, и напряжение возрастает с большой скоростью. После достижения ?пр проявляются только пластические деформации, хотя в обоих случаях имеют место и те, и другие. В этот период напряжение возрастает медленно и только за счет наличия упругих деформаций, вплоть до нарушения сплошности структуры, Rпр.

Таким образом, становится очевидным, что появление пластических деформаций свидетельствует о начале процесса разрушения структуры твердого тела. Этот факт следует учитывать при расчете или выборе конструкций различного функционального назначения, разработке способов подготовки масс, формования, других технологических переделов.

Рис.5.6. Кривые зависимости напряжение – деформация:

______ упругая деформация;

----------пластическая деформация.

Рис. 5.7. Зависимость упругой и пластической деформаций от времени приложения нагрузки

На рис. 5.7 изображен график временной зависимости деформации при постоянном напряжении и температуре.

В момент нагружения, которое осуществляется со скоростью звука, в твердой непрерывной среде возникает только упругая деформация 4 (отрезок ОА). С течением времени в твердом теле развивается необратимая деформация. Совокупное развитие обратимой и необратимой деформаций во времени характеризуется отрезком АВ. В момент времени ?i, соответствующий т. В, обратимая деформация достигает равновесного значения при действующем напряжении и больше не увеличивается. Если бы наблюдаемая деформация была обусловлена только обратимой (упругой) составляющей деформации, то в дальнейшем она не изменялась бы во времени, и отрезок ВС располагался бы параллельно оси времени. В действительности деформация непрерывно увеличивается, но уже за счет необратимой составляющей, и отрезок ВС характеризует ее изменение во времени.

Если участок ВС прямолинеен, то, экстраполируя его к нулевому моменту времени, получаем графическое выражение закона пластической деформации в виде прямой ВС. Пластическая деформация (отрезок ДЕ), накопившаяся за время ?2 остается после снятия нагрузки, когда со временем гз исчезает упругая составляющая (кривая СД).

Резюмируя сказанное, отметим следующее:

- в момент нагружения (мгновенно) имеет место только упругая деформация (ОА);

- в период достижения упругой деформацией равновесного значения (АВ) имеет место как упругая, так и пластическая деформация,

- в период роста пластической деформации упругая составляющая остается неизменной (ВС);

- после снятия нагрузки исчезает упругая деформация (СД);

- (ДЕ) - пластическая деформация.

Разделение упругой и пластической деформаций, улучшение пластических свойств материала — достаточно сложные, но подчас необходимые операции при создании новых технологий переработки, обработки, формования различных материалов и получении материалов с заданными свойствами.

Причины и механизм образования пластических деформаций

Напомним, что при приложении к твердому телу внешней силы, величина которой превышает предел текучести а возникает пластическая деформация, образующаяся в результате скольжения плоскостей атомной решетки благодаря напряжению сдвига. Напряжение, необходимое для смещения ряда атомов вдоль некоторой плоскости, как показано на рис. 5.8, можно определить по формуле:

?т = (G/2?)(b/h),

где G— модуль сдвига;

b — расстояние между атомами в направлении скольжения;

h — расстояние между плоскостями скольжения.

Рис. 5.8. Отклонения в расположении атомов под воздействием напряжения сдвига

Следует заметить, что во время скольжения плоскостей каждый атом перемещается не вдоль прямой линии расположения соседних атомов, где необходимо преодолевать высокий энергетический барьер, а по зигзагу через места с низкими энергетическими барьерами, и поэтому значение ?T должно быть на порядок ниже. Например, для Al2O3 теоретическое значение ?T = 1,7х 105МПа, а реальное в 17 раз меньше. Тот факт, что экспериментальные значения оказываются гораздо меньше теоретических, можно отнести почти ко всем другим твердым материалам, а также металлам.

Способность различных материалов к пластической деформации и механизм ее образования можно объяснить с помощью понятия “дислокации”. Если к кристаллу приложить усилие, вызывающее напряжение сдвига, то происходит скольжение его верхней и нижней частей во взаимно противоположных направлениях. В результате этого возникают дислокации, т.е. линии, вдоль и вблизи которых нарушено характерное для кристалла правильное расположение атомных плоскостей.

Поскольку дислокация в кристалле обладает собственным полем напряжений, возникающим от действия внешних сил, она также испытывает силу, под действием которой приходит в движение, результатом чего является взаимное “проскальзывание” атомных плоскостей, или пластическая деформация.

Каждый раз при перемещении дислокации в плоскости скольжения разрываются и возникают новые связи не между всеми атомами на плоскости скольжения, а только между теми атомами, которые находятся у линии дислокации. Поэтому пластическая деформация сдвига происходит при сравнительно малых внешних напряжениях, которые значительно ниже теоретических, т.е. без дислокаций.

Плоскость скольжения образуется в кристалле лишь на участках со слабой связью между атомами. При этом скольжение происходит в направлении самого низкого энергетического барьера, который необходимо преодолеть. Механизм скольжения, основанный на движении дислокаций, можно идентифицировать с перемещением по полу ковра с предварительно созданной складкой. На рис. 5.9. приведен пример систем скольжения в кристалле поваренной соли.

Рис. 5.9. Системы скольжения в кристаллах типа NаСl

Если приложить к кристаллу внешнюю силу в каком-то направлении, то на скольжение в кристалле будут эффективно влиять только те составляющие внешней силы, которые соответствуют системам скольжения. Исходя из этого, можно заключить, что чем больше вероятность реализации системы скольжения, тем выше пластические деформации кристалла. Очевидно, что в металлах такая вероятность значительно выше, чем в природных каменных материалах и керамике.

Подвижность дислокаций, обеспечивающая пластические свойства кристалла, ограничивается не только прочностью межатомных связей, но и рассеянием фононов и электронов проводимости в упругоискаженной области кристалла. Кроме того, движению дислокации мешают также упругое взаимодействие с другими дислокациями и с примесными атомами межзеренными границами в поликристаллах и пр. На преодоление отмеченных препятствий затрачивается часть работы внешних сил. Из этого следует, что реальный кристалл (с дислокациями) «мягче» или пластичнее бездефектного, но если плотность дислокаций становится выше критического значения, то он становится более прочным и «жестким».

Дислокации, как и иные дефекты кристаллов, влияют не только на такие их свойства, как пластичность и прочность, но и на другие физические свойства кристаллов. Например, с увеличением плотности дислокаций возрастает внутреннее трение, изменяются оптические свойства, повышается электрическое сопротивление (металлов). Дислокации увеличивают скорость диффузии в кристаллах, ускоряют процессы старения, увеличивают химическую активность и уменьшают стойкость кристаллических структур в различных средах.

Таким образом, пластичность наряду с упругостью является важнейшей характеристикой твердых тел. Пластические деформации, возникающие в теле под действием внешних сил, позволяют судить о характерных особенностях структуры того или иного материала в двух основных аспектах:

1. Появление пластических деформаций — свидетельство начала разрушения структуры материала. Это позволяет:

- определить запасы прочности, деформируемости и устойчивости структуры;

- снизить материалоемкость изделий и конструкций;

- обеспечить их наиболее рациональное функционирование, надежность и безопасность;

- повысить сопротивляемость тел ударным нагрузкам, снизить концентрацию напряжений в материале.

2. Наличие значительных пластических деформаций — положительный момент для обеспечения качественного формования и обработки твердых тел давлением (прокатка, штамповка, ковка и т. п.).

Хрупкость

Если при нагружении твердых тел возникают преимущественно упругие деформации, а пределы текучести и прочности имеют близкие значения, то такие тела называются хрупкими. (У идеально хрупких тел ?Т =Rпр).

Хрупкие тела разрушаются почти мгновенно, с едва заметной деформацией.

Отсюда следует, что хрупкость — свойство материала разрушаться при незначительной, преимущественно упругой, деформации, при напряжениях, средний уровень которых несколько ниже предела текучести.

Эластичность

Эластичность (от греч. е1аstos — гибкий, тягучий) — способность материала или изделия испытывать значительные упругие (обратимые) деформации без разрушения при сравнительно небольших усилиях. Такой способностью обладают каучуки (натуральные и синтетические), резина, некоторые, в основном линейные, полимеры. Благодаря этой способности их обычно называют эластомерами.

В отличие от упругости кристаллических материалов и стекол, обратимые деформации которых составляют доли процента или несколько процентов, упругие деформации эластомеров достигают 100% и более. Это связано с особым состоянием полимеров, которое называется высокоэластическим.

Высокоэластическое состояние является устойчивым в определенном для каждого полимера интервале температур, ниже которого полимер находится в стеклообразном состоянии, а выше — в вязко - текучем состоянии.

2. Прочность

Под прочностью в широком смысле слова понимают способность материалов сопротивляться разрушению, происходящему в результате действия внешних сил. Кроме того, причиной разрушения материала могут быть такие факторы, как неравномерно протекающие тепло- и массообменные процессы, действие электрических и магнитных полей и многие другие физические и физико-химические процессы и явления.

Критерии прочности

Критериями прочности в зависимости от класса материала, вида напряженного состояния (растяжение, сжатие, сдвиг и др.) и условий эксплуатации (температура, время действия нагрузки и пр.) могут быть временное сопротивление, предел текучести, предел усталости и другие виды сопротивления.

Прочность строительных материалов чаще всего оценивают временным сопротивлением, или пределом прочности «R», определяемым при данном виде деформации. для хрупких материалов (природных и искусственных каменных материалов) основными прочностными характеристиками являются пределы прочности при сжатии и изгибе, а для эластичных (полимеры) — предел прочности при растяжении, которые определяются по формулам:

Rсж = Fсж/А; Rр = Fр /A Rи = M / W

где Rсж, Rр Rи — соответственно пределы прочности при сжатии, растяжении и изгибе, МПа;

Fсж и Fр — соответственно разрушающее усилие при сжатии и растяжении, Н;

А — площадь поперечного сечения испытуемого образца, м2;

М — наибольший изгибающий момент, Н•м;

W - момент сопротивления сечения образца, м3.

Факторы, влияющие на показатель прочности

Полученные показатели пределов прочности материалов (особенно предела прочности при сжатии) носят условный характер, так как при испытании на конечный результат существенное влияние оказывают различные факторы:

- размер и форма образца;

- время и скорость приложения нагрузки;

- тепловлажностные условия проведения испытаний;

- методы испытаний и особенности конструкций испытательных машин.

Влияние размера и формы образца на показатели предела прочности при сжатии обусловлено двумя факторами: образованием при сжатии поперечных растягивающих усилий и наличием в большем объеме образца большего количества дефектов структуры, влияющих на прочностные свойства материала.

При одноосном сжатии, благодаря наличию у образца свободных вертикальных поверхностей, образуются поперечные растягивающие усилия. Между опорными гранями образца и плитами пресса эти усилия уравновешиваются силами трения. По мере удаления от поверхности образца действие сил трения уменьшается и растягивающие усилия растут, достигая своего максимума к середине образца (по высоте). Чем больше расстояние между опорными плитами образца при сжатии, т.е. hк hпр (рис. 5.28), тем меньше силы трения в середине образца и выше результирующие растягивающие усилия. Поэтому предел прочности при сжатии у образцов кубической формы выше, чем у призм.

Случайное распределение структурных неоднородностей по объему и поверхности образца приводит к различным значениям прочности в разных локальных участках структуры. Прёдел прочности всего образца определяется прочностью самого слабого участка.

Рис. 5.10. Схемы сжатия образцов:

а - поперечное расширение при сжатии эластичных тел;

б - изменение сил трения при сжатии хрупких тел кубической и призматической формы

Вероятность встретить в образце слабое место тем больше, чем больше его объем. Поэтому разрушающее напряжение малых образцов выше, чем больших из того же материала. Особенно это заметно при сравнении пределов прочности при растяжении изделий, резко различающихся по сечению, таких, как стержень, проволока, волокно. Чем меньше сечение изделия, тем меньше его удельный объем и поверхность, а следовательно, меньше вероятность наличия в нем дефектов (табл. 5.1).

Ввиду этих особенностей в строительстве все чаще используются тросы и канаты, сплетенные из тонкой проволоки, а в текстильной промышленности - нити, сплетенные из тончайших волокон.

Следует заметить, что значительное количество дефектов в виде микротрещин, выступов, шероховатостей и т. д. образуется на поверхности изделия, так как при формировании структуры поверхность слоя испытывает большие напряжения, чем внутренние слои материала. Полировка поверхности нивелирует эти дефекты, а защитные покрытия препятствуют их развитию, увеличивая прочность изделия.

Таблица 5.1 Предел прочности при растяжении материалов различной формы

Материал Предел прочности при растяжении, МПа Стандартная форма Волокнистое изделие Графит - 24000 (нитевидный кристалл) Сталь 500-3000 4000-5000 (проволока) Стекло 12-20 3000-3600 Асбест - 3200-5400

Скорость приложения нагрузки также оказывает влияние на конечный результат при испытании. Значение разрушающего напряжения оказывается, как правило, выше, если образец разрушен в короткий промежуток времени. Напротив, значение разрушающего напряжения такого же образца, разрушенного медленно, оказывается более низким.

Поскольку для хрупких материалов разрушение рассматривается как процесс зарождения и роста трещин, время от момента приложения нагрузки до момента разрушения характеризует жизнеспособность материала, которую в материаловедении принято называть долговечностью.

Исследования многих кристаллических и аморфных материалов показали, что в широком интервале температур и напряжений долговечность «?» при растяжении определяется соотношением (Журков):

? = ?о.еxp(Uo – ?V) / kT

где ?o— период тепловых колебаний атомов в твердом теле, с;

Uo — энергия, близкая к энергии сублимации материала, Дж;

?— напряжение, МПа;

V—объем, м3;

Т — абсолютная температура, К;

k — постоянная Больцмана, Дж/К.

Установлено, что предельные значения напряжений ?о, действующие на образцы из хрупкого материала, почти неизменны при любых практически значимых величинах долговечности ?. Если предельные значения напряжений ?о (пределы прочности материалов) превышены, то образец мгновенно разрушается; если эти значения ниже, то срок долговечности материала не ограничен.

Влияние тепловлажностных воздействий. Для большинства хрупких и пластичных материалов повышение температуры при испытании снижает прочностные показатели образцов, особенно при растяжении и изгибе. Это связано с явлением температурного расширения и увеличением межатомного расстояния. Однако следует заметить, что при незначительных отклонениях от нормальной температуры (18.. .20°С) изменения прочности несущественны.

При более высоких температурах (400... 800°С) различные материалы ведут себя по-разному. Например, керамические изделия мо гут увеличивать свою прочность благодаря закрытию (залечиванию) трещин, а безобжиговые изделия, в основном гидратационные материалы, резко снижают свои прочностные показатели.

При температурах выше 1000... 1300 предел прочности керамических материалов при изгибе зависит от содержания и свойств кристаллической фазы, а при сжатии — от содержания и свойств стекловидной фазы. Гидратационные материалы при таких температурах разрушаются.

Для большинства полимерных материалов повышение температуры снижает прочность образцов. Однако для полимеров, реализующих способность макромолекул к деформации (эластики), наблюдается температурный интервал аномалии температурной зависимости. В этом интервале с увеличением температуры возрастает ориентация макромолекул перед разрывом образца. Причем чем больше ориентация, тем выше прочность образца. Это явление перекрывает общую тенденцию понижения прочности при повышении температуры испытания.

Влажность среды и материала оказывает в большинстве случаев негативное воздействие на его прочностные показатели. Снижение прочности материалов вызывается рядом причин:

- действием адсорбционно-активной среды (эффект Ребиндера);

- растворением метастабильных контактов срастания кристаллов, состав-ляющих структуру материала;

- набуханием присутствующих в некоторых материалах глинистых минералов и др.

Паровая среда, т.е. совместное действие температуры и насыщенного водяного пара, оказывает еще большее влияние на прочностные показатели материалов. Результаты испытаний представлены в табл. 5.2.

Следует заметить, что не представляется возможным с достаточной степенью точности определить обособленное влияние каждого из многочисленных факторов на процесс разрушения материала.

Таблица 5.2. Предел прочности при сжатии (МПа) некоторых материалов в зависимости от тепловлажностных воздействий

Материал Сухая среда,

240оС Насыщенный водяной пар 240оС 25оС Натрий-кальций-силикатное стекло 150 - 77 Кварцевое стекло 453 257 391 Кварц 448 251 367 Гранит 130 42 164

Общие положения относительно прочности и разрушения материала

Учитывая вышеизложенное, можно сформулировать следующие общие положения по вопросам прочности и разрушения строительных материалов.

1. Всякое тело в процессе эксплуатации практически всегда находится под действием механических сил. Если эти силы велики, то тело неизбежно разрушится. Разрушение произойдет тем позднее, чем меньше деформирующие усилия.

2. Практическое воздействие механических сил нередко оказывается столь незначительным, что еще до механического разрушения материал может разрушиться вследствие химических процессов (коррозия, дегидратация, деполимеризация).

3. При разрушении материала разрываются связи, обеспечивающие его целостность. При этом энергии затрачивается больше, чем затрачено на образование связей. Энергия разрушения складывается из энергии теплового движения, преодолевающего притяжение элементов структуры, и работы (энергии) деформации.

4. В процессе разрушения происходит флуктуация тепловой энергии тел, так как постоянно разрушаются одни связи и восстанавливаются другие. Механическое воздействие внешней силы в зависимости от типа твердого тела обусловливает в той или иной степени восстановление или перегруппировку этих связей в новом месте в соответствии с направлением действия силы. Даже при ярко выраженном хрупком разрушении на поверхности заметны следы перенапряжений в виде измененной структуры материала.

5. Наряду с поглощением энергии при механическом нагружении происходит распределение энергии по связям, обеспечивающим сплошность структуры образца. Однако неравномерность распределения объясняется релаксационными свойствами материала или его фаз, т.е. степенью его структурной однородности.

6. При разрушении рассматриваются мгновенный или критический характер разрушения (теория Гриффитса) и постепенное разрушение, отвечающее статистической теории хрупкой прочности (Журков С.Н. и Александров А.П.). Сущность статистической теории состоит в том, что разрыв происходит не одновременно по всей поверхности разрушения, а постепенно, начиная с самого опасного очага, на котором перенапряжение достигает значения, сравнимого с величиной теоретической прочности. Затем разрушение идет в новых дефектных местах.

7. Поверхностные дефекты составляют значительную долю дефектов структуры и фактически определяют величину реальной прочности материала.

8. По мере растяжения образца из пластичного и эластичного материала (металлы и, полимеры) в результате его утончения напряжение сначала возрастает. Однако вследствие перегруппировки частиц, стремящихся занять менее напряженное положение, скорость роста напряжения замедляется. далее наступает момент, когда частицы не справляются с возрастающим напряжением, и происходит разрыв.

Следовательно, можно заключить, что разрушение твердых тел связано в основном с диссипативными явлениями, обусловленными необратимостью процесса разрыва перенапряженных межатомных связей тепловыми флуктуациями. При этом механизм рассеяния энергии для низкомолекулярных соединений связан с созданием новых поверхностей, а для высокомолекулярных соединений — обусловлен еще и цепным строением молекул.

2. Твердость

Твердость - свойство материала, которое характеризует сопротивление упругой и пластической деформации при вдавливании в него стандартного тела в условиях неравномерного сжатия. Эта величина, отражая энергию связи и особенности структуры, зависит от некоторых физико-механических, а также таких свойств, как прочность и пластичность.

Факторы, влияющие на твердость материала

Твердость является структурной характеристикой материала, ее связь с электронной структурой сложна и неоднозначна. Более очевидно влияние на твердость температуры и пористости.

При увеличении температуры твердость материала снижается из-за увеличения подвижности дислокаций и, как следствие, роста пластических деформаций.

Влияние пористости на твердость материалов неоднозначно. Пористость в интервале от 0 до 4% природных каменных материалов группы гранита и керамического фарфорового черепка, практически, не оказывает влияния на твердость, однако при показателе пористости 13% (обычный тяжелый бетон) влияние пор весьма существенно, особенно при высоких температурах.

Способы оценки твердости

Оценку твердости материала связывают с поведением его поверхностного слоя при механическом воздействии на материал. При этом используют два различных метода:

- качественный, или сравнительный метод, когда пластическая деформация поверхности осуществляется при взаимном царапании сравниваемых материалов;

- количественный метод, при котором пластическая деформация поверхности материала достигается вдавливанием в нее так называемых инденторов, т.е. стандартных твердых тел различной геометрической формы.

В первом случае в качестве ориентира применяют шкалу твердости по Моосу, т.е. обозначают стандартные материалы твердых тел 10 видов (от талька до алмаза), которые ступенчато классифицированы от 1 до 10 в зависимости от твердости, определяемой при взаимном царапании. Более мягкими считают те материалы, на которых остается царапина, а более твердыми — те, на которых следы царапин отсутствуют (см. табл. 5.3).

Таблица 5.3. Влияние структуры и типа химической связи на твердость минералов (шкала Мооса)

Шкала твердости Минерал Химическая формула Структура Химическая связь 1 Тальк Mg3[Si4O10][OH]2 Листовая Ионно-мол. 2 Гипс CaSО4 • 2Н2О Пластинчатая Ионная 3 Кальцит СаСО3 Призматическая Ионная 4 Флюорит CaF2 То же Ионная 5 Апатит Ca5[P04]3F То же Ионная 6 Ортоклаз К[А1 Si3O8] Ромбическая Ионно-ковал. 7 Кварц SiO2 Тетраэдрическая Ковалентная 8 Топаз Al2[Si40][F,0H]2 То же Ковалентная 9 Корунд A12O3 Октаэдрическая Ковалентная 10 Алмаз С Тетраэдрическая Ковалентная

В табл. 5.3 явно просматривается зависимость показателя твердости от класса минерала и типа химической связи Наибольшей твердостью обладают кристаллы с высокой направленностью ковалентной связи. Простые кристаллы за редким исключением (например, SiС) имеют более высокую твердость.

Как ориентир твердости материалов показатель твердости по Моосу является весьма качественным экспериментальным показателем.

Количественный метод определения твердости связан с приложением нагрузки посредством вдавливания индентора из алмаза или другого материала в поверхность испытуемого образца. По величине образующегося отпечатка рассчитывают показатель твердости. В зависимости от типа и формы индентора различают показатель твердости по Бринеллю (символ Нв), по Виккерсу (Нv), по Кнуппу (НN) и по Роквеллу (НR).

Величину твердости в зависимости от высоты отскока стального Шарика при падении на поверхность твердого тела называют показателем твердости по Шору.

Рис. 5.29. Схемы определения твердости материалов методом вдавливания индентора:

а — по Бринеллю (Нв); б — по Виккерсу (НV); в — по Кнуппу (HN)

Результаты испытаний на твердость одних и тех же материалов, проведенных различными методами, как правило, неодинаковы, хотя cходимость их во всех случаях имеет место. Так, зависимость между твердостью по Моосу М и твердостью по Виккерсу НV выражается формулой:

lg НV = kМ,

где k — константа (для керамики k = 1,6; для металлов k = 1,2).

При испытаниях материалов по методу вдавливания большое влияние на результат оказывают величины прикладываемой нагрузки:

- при усилиях вдавливания ниже определенного для каждого материала значения возникают только упругие деформации и отпечатка от индентора не остается, а следовательно, замерить показатель твердости не удается;

- при усилиях вдавливания выше критического значения на поверхности образуется отпечаток, глубину которого можно замерить и, следовательно, установить величину сопротивления пластической деформации, т.е. показатель твердости.

Таким образом, при увеличении усилия вдавливания сверх предела текучести для некоторых материалов, например металлов, происходит пластическая деформация, но так как металлы с большим модулем Юнга характеризуются большим пределом текучести, можно предположить, что пластичные материалы с большим модулем Юнга должны обладать большей твердостью.

Хрупкие материалы, например керамика, плохо подвергаются пластической деформации и во многих случаях разрушаются в пределах упругости. Следовательно, если усилие вдавливания индентора в поверхность керамики выше некоторого предела и образуется отпечаток, то не только осуществляется пластическая деформация, но и возникают трещины, которые могут быть причиной локального разрушения материала.

Таким образом, - твердость — это характеристика материала, отражающая его пластичность и прочность.

Твердость связана четкой корреляционной зависимостью с модулем Юнга. У минералов, обладающих химической связью одного типа, с увеличением модуля Юнга твердость увеличивается.

Завершая анализ деформативных и прочностных свойств строительных материалов еще раз отметим четко выраженную взаимосвязь в системе: состав — химические связи — структура — свойства.

Лекция 6. ЭКСПЛУАТАЦИОННЫЕ СВОЙСТВА

6.1. Основные понятия, термины, определения

Эксплуатационными принято считать такие особенности материала, которые проявляются во взаимодействии с окружающей средой в период его работы в конструкции в тех или иных условиях. К таким условиям можно отнести:

- переменные температурные воздействия при эксплуатации тепловых агрегатов;

- атмосферные условия, связанные с переменными тепловлажностными воздействиями;

- влияние агрессивных жидкостных и газовых сред.

К материалам, работающим в таких условиях, предъявляют повышенные требования, связанные с сохранением специально созданной структуры. Материалы, работающие в условиях воздействия агрессивных сред, должны обладать стойкостью к тем или иным воздействиям. Например: они должны характеризоваться водостойкостью; морозостойкостью; термостойкостью, или температуростойкостью; огнестойкостью; коррозионной стойкостью; и др. Рассмотрим некоторые из них.

6.2. Водостойкость

Водостойкость — способность материала сопротивляться агрессивному воздействию на него воды. Результатом такого воздействия может быть снижение прочности материала, связанное с частичным разрушением структуры вследствие разрыва наиболее слабых химических связей.

Причинами частичного разрушения структуры могут быть следующие:

- адсорбционно-активное воздействие тонких водных пленок на микротрещины, имеющиеся в пористой структуре материала;

- химическое воздействие воды на метастабильные контакты различных фаз;

- деформация структуры в результате процессов набухания и усадки гидрофильных составляющих материала.

Критерием водостойкости принято считать 20%-ное снижение прочности в результате водонасыщения материала. Количественно водостойкость характеризуется коэффициентом размягчения Кразм, который определяется по формуле

Кразм = (Rсух — Rнас) / Rсух,

где Rсух и Rнас пределы прочности при сжатии соответственно сухих и водонасыщенньхх образцов материала, МПа.

Из формулы видно, что чем больше потеря прочности материала, тем выше коэффициент размягчения и ниже водостойкость материала. Таким образом, материалы, имеющие коэффициент размягчения выше 0,2, т.е. потеря прочности которых составляет более 20%, следует считать неводостойкими.

Примечание. Коэффициент снижения прочности при водонасыщении по ГОСТ 9479-84 «Блоки из природного камня для облицовочньтх изделий. Методы испытаний» принято определять как соотношение пределов прочности при сжатии водонасыщенных и сухих образцов».

6.3. Морозостойкость

Морозостойкость плотных и пористых материалов

В строительном материаловедении понятие «морозостойкость» связывают с воздействием на материал двух основных факторов:

- влияние низких температур - для абсолютно плотных материалов (стекло, металлы, полимерные изделия и др.);

- совокупное влияние низких температур и воды - для материалов мелкопористой структуры (природные и искусственные каменные материалы, в том числе строительная керамика, бетоны, растворы и др.).

Таким образом, для плотных материалов морозостойкость — способность материала сохранять эксплуатационные свойства при низких температурах. К таким материалам предъявляются требования в зависимости от их назначения с учетом условий эксплуатации. В большинстве случаев основным требованием является сохранение целостности структуры.

Механизм разрушения структуры материала при перепадах температуры связан с явлением расширения — сжатия и изменением упругих свойств материала. При низких температурах материал становится более хрупким, ломким; резко снижается его ударная прочность.

Это в большей степени относится к полимерным материалам и металлам.

Морозостойкость природных и искусственных каменных материалов — способность материала выдерживать многократное попеременное замораживание и оттаивание в насыщенном водой состоянии (без видимых признаков разрушения и допустимого понижения прочности).

Разрушительное воздействие мороза на ограждающую конструкцию можно условно разделить на три основных периода: водонасыщение, промерзание и, собственно, разрушение.

В наиболее влажный период года происходит водонасыщение поверхностного слоя ограждающей конструкции

Рис. 6.1. Распределеление температуры в наружной стене здания (а) и заполнение пор водой (б) вблизи наружной поверхности:

1 - адсорбированная вода; 2 - конденсат; З - устье; 4 - дождевая вода

При понижении температуры окружающей среды наружные слои конструкции постепенно охлаждаются, фронт низких температур распространяется внутрь конструкции. Водяной пар, находящийся в противоположной зоне конструкции, перемещается от тепла к холоду, поскольку давление влажного воздуха при отрицательной температуре ниже, чем при положительной. Попадая в зону низких температур, водяной пар конденсируется в порах, вблизи наружной поверхности ограждающей конструкции (рис. 6.1.).

При наступлении даже небольших морозов (-5..-8оС) вода, находящаяся в крупных порах, замерзая и превращаясь в лед, создает напряженное состояние в материале.

Механизм разрушения структуры пористых тел при замораживании

Существует несколько гипотез, объясняющих причины разрушения структуры материала при замораживании:

- вода, находящаяся в крупных порах материала при температуре ниже 0,01оС, превращается в лед с увеличением в объеме около 9%. Если при этом коэффициент насыщения приближается к 1, то в стенках пор могут возникнуть растягивающие напряжения, являющиеся основной причиной разрушения структуры;

- давление расширения воды при замерзании заставляет мигрировать еще не замерзшую воду, создавая большое гидростатическое давление, которое усиливает напряжения на стенки сообщающихся пор;

- перемещение незамерзшей воды в направлении поверхности из тонких пор в крупные в момент образования в них льда и понижение при этом давления пара (эффект вспучивания грунта при замерзании).

Анализируя вышеперечисленные гипотезы, отметим, что, несмотря на некоторые противоречия (например, между двумя последними причинами в плане направления миграции воды), главным фактором разрушения следует признать изменение фазового состояния воды при изменении температуры или давления.

С точки зрения термодинамики, процесс замораживания сопоставим с процессом сушки пористых материалов по двум основным положениям:

- изменение агрегатного состояния воды или установление равновесного состояния «вода —лед» при замораживании и «вода — пар» при сушке (рис. 4.31);

- возникновение массообменных процессов внутри материала в результате высоких градиентов давлений над водой при замораживании и высоких градиентов влажности при сушке.

Известно, что процесс диффузии влаги внутри материала при сушке зависит от характеристики структуры материала и свойств воды, а также градиентов температуры, влажности и давления.

Проводя аналогию между процессами диффузии влаги при сушке и замораживании материалов, отметим следующие основные моменты:

- если при сушке основной движущей силой влагопроводности является градиент влажности, который во многом зависит от интенсивности испарения воды, то при замораживании — градиент давления, который зависит от изменения температур и скорости кристаллизации воды;

- направление движения влаги в обоих случаях одинаковое — в сторону расположения критической точки превращения воды: в первом случае — в пар, во втором — в лед, т. е. к поверхности;

- роль воздуха в пористой структуре материала в двух этих процессах неодинаковая, но положительная: при сушке, особенно во время интенсивного нагрева, влага в порах испаряется и за счет избыточного давления пара увеличивает диффузию, а при замораживании наличие свободного воздушного пространства уменьшает гидростатическое давление и снижает напряжение в материале.

Факторы, влияющие на морозостойкость

Анализ механизма при замораживании показывает, что морозостойкость пористых строительных материалов связана в основном с двумя характеристиками структуры: водопоглощением и способностью сопротивляться растягивающим напряжениям.

Водопогющение — косвенная характеристика пористости, которая показывает способность материалов впитывать и удерживать влагу в период эксплуатации. Водопоглощение характеризуется коэффициентом насыщения пор водой, который определяется по формуле:

Кн = W / П,

где: Кн — коэффициент насыщения, ед.;

W - водопоглощение по объему, %;

П — общая пористость материала, %.

Коэффициент насыщения может изменяться от 0 (все поры в материале замкнутые) до 1 (все поры открытые), и тогда W = П. Уменьшение коэффициента насыщения при неизменной пористости свидетельствует о сокращении открытой пористости, что значительно повышает морозостойкость структуры.

Предел прочности при растяжении зависит от природы химических связей и наступает при нарушении равновесия между силами притяжения и отталкивания с последующим нарушением связности структуры. Эта характеристика является константой для каждого материала.

Однако следует заметить, что в условиях замораживания в локальных участках пористой структуры имеет место не классическое осевое растяжение, а гидростатическое давление расширения, которое меняет характер и механизм разрушения структуры.

Главной проблемой повышения морозостойкости пористых материалов является снижение растягивающих напряжений при замораживании, которое может быть достигнуто:

- при уменьшении водопоглощения за счет создания микропористой структуры с преимущественно замкнутыми порами;

- путем воздухововлечения, когда в материале образуются воздушные резервуары, гасящие избыточное давление мигрирующей воды;

- посредством введения в структуру материала высокодисперсного армирующего компонента, увеличивающего пластическую составляющую в целом упругой деформации.

Количественно морозостойкость материала оценивается циклами замораживания и оттаивания. Количество циклов определяется по потере прочности материала, которая не должна превышать 25%, или по потере массы, которая не должна превышать 5%.

Показатель морозостойкости (марка) обозначается символами:

F15; F25; F50.. F500, где цифры показывают количество циклов замораживания и оттаивания материала при испытании.

Условия испытания, установленные российскими и международными стандартами, являются значительно более суровыми, чем реальные условия эксплуатации материала, особенно в части интенсивности замораживания и оттаивания, что в значительной мере связано со сроками проведения этих испытаний. В табл. 6.2 представлены показатели морозостойкости некоторых строительных ма териалов.

Таблица 6.2. Морозостойкость строительных материалов в зависимости от водопоглощения и предела прочности при разрыве

Материал Водопо-глощение, % Плотность,

г/см3 Rразр, МПа Морозостой-кость, циклы Керамический кирпич 8...15 1,6...1,9 0,9..3,5 15...50 Кер. фасадная плита 1..5 1,9...2,2 4..6 35...50 Клинкерный кирпич < 1 2,3...2,5 6...10 50...100 Ячеистый бетон 40...60 0,5...1,2 0,078... 1 15...75 Легкий бетон - 0,8...1,8 0,8..3,2 25...400 Тяжелый бетон 3...10 2,2...2,5 0,8..3,2 50...500 Асбестоцемент 20...25 1,6...1,8 10..15 50...100

Анализ таблицы позволяет сделать следующие выводы:

- водопоглощение и сопротивление растяжению являются основными факторами, влияющими на морозостойкость любого вида пористых каменных материалов;

- с увеличением водопоглощения и уменьшением сопротивления растяжению морозостойкость материалов уменьшается;

- мера влияния водопоглощения и сопротивления растяжению на морозостойкость зависит от вида материала и особенностей его структуры:

- керамические материалы: оба фактора имеют примерно равное значение;

- тяжелые бетоны: главным является водопоглощение;

- легкие бетоны: главный фактор — особенность структуры, связанная с наличием резервной пористости заполнителя; водопоглощение и сопротивление растяжению, практически, влияния не оказывают;

- ячеистые бетоны: наличие преимущественно крупных (10.. .200 мк), неопасных пор; водопоглощение и сопротивление растяжению второстепенны;

- асбестоцементные материалы: высокое сопротивление растяжению и снижение напряжения расширения благодаря увеличению доли пластических деформаций при разрушении; водопоглощение — второстепенный фактор.

6.3. Коррозионная стойкость

Основные понятия, термины, определения

Коррозионная стойкость — способность материала противостоять действию агрессивных сред (коррозии).

Коррозия (от лат. соrrоsiо — разъедание) — разрушение материалов вследствие химического или электрохимического взаимодействия со средой.

Строительные материалы, и в первую очередь их поверхности, в течение длительной эксплуатации разрушаются в основном в результате двух видов воздействия: коррозионного, связанного с влиянием на материал внешней, агрессивной среды, и эрозионного, вызываемого механическим воздействием.

Эрозионное разрушение интенсивно протекает при относительно быстром перемещении среды или материала. Особенно большой величины эрозия достигает при контакте материала с расплавами металлов и шлаков, а также с газообразными окислителями и пр.

Явления коррозии и эрозии часто сопутствуют друг другу, и поэтому их не всегда удается разделить. В строительном материаловедении эти явления рассматривают раздельно. Эрозионные процессы рассматриваются при изучении эксплуатационных свойств покрытий полов, дорожных покрытий и пр.

Виды коррозии строительных материалов

Коррозия строительных материалов различается по виду коррозионной среды, характеру разрушения и процессам, происходящим в них:

коррозионная среда:

газовая: (инертный газ; химически активный газ);

жидкостная: (кислотная; соленая; щелочная, морская; речная; в расплаве металлов, силикатов)

характер разрушения: (равномерное, солевая, неравномерное, избирательное, поверхностное, растрескивание, местное, межкристаллитное);

виды воздействий (процессов):(химические; электрохимические; биологические).

Газовая коррозия представляет собой коррозию в газовой среде при полном отсутствии конденсации влаги на поверхности материала. Этому виду коррозии подвержены материалы, работающие в условиях высоких температур в среде осушенного газа (керамика). Газовая коррозия относится к химическим процессам разрушения. Скорость ее зависит от природы материала, его структуры и свойств новообразований на его поверхности.

Жидкостная коррозия природных и искусственных каменных материалов, происходящая под действием растворов электролитов и не электролитов, а также различных расплавов, носит в основном химический характер, хотя, в зависимости от вида и свойств жидкости отличается рядом особенностей. Важнейшей особенностью жидкостей является наличие в них сил межмолекулярного взаимодействия. Этим обусловлены два свойства жидкого состояния: молекулярное давление и связанное с ним поверхностное натяжение. Поверхностное натяжение жидкости оказывает большое влияние на интенсивность разрушения материала, которое определяется так же смачивающими свойствами жидкости.

Равномерная коррозия возникает в результате действия агрессивной среды при достаточной толщине изделия и равномерном распределении напряжений сжатия, изгиба или растяжения. Коррозия этого вида в отличие от других в значительно меньшей степени влияет на прочностные свойства материала.

Неравномерная, или местная коррозия (пятна, язвы, разводы) происходит при различной концентрации агрессивной среды на от дельных участках или неоднородности самого материала (его состава и структуры). Так, в результате неравномерного распределения кристаллической и стекловидной фаз в керамическом материале коррозионное разрушение на его отдельных участках протекает с разной скоростью. При этом в стекловидной фазе процесс развивается значительно быстрее, чем в кристаллической. Наличие в материале неоднородной пористости также способствует образованию в нем неравномерной коррозии.

Избирательная коррозия характерна для материалов, в которых один из компонентов при формировании структуры образует легко растворимые соединения. В период эксплуатации эти соединения могут переходить в раствор, образуя на поверхности материала так называемые «высолы».

Межкристаллитная коррозия возникает в результате разрушения материала по границам зерен и быстро распространяется в глубь материала, резко снижая его свойства. Этот вид коррозии присущ некоторым обжиговым материалам, при спекании которых образуются новые фазы, твердые растворы и пр. и, следовательно, границы раздела.

Коррозионное воздействие в общем случае может иметь два принципиально различных механизма: химическое взаимодействие и растворение.

Химическое взаимодействие сводится к реакции между средой и материалом с образованием новых соединений. При наличии в агрессивных средах примесей, а в материале — добавок химические реакции могут протекать между всеми элементами взаимодействия. Поскольку каменные материалы являются диэлектриками и взаимодействие их с агрессивной средой не сопровождается возникновением электрических токов, процесс разрушения материалов называют химической коррозией.

При воздействии агрессивных сред на металлы происходит электрохимический процесс передачи электронов из слоя металла с более низким электрическим потенциалом к слою с более высоким потенциалом и восстановление электроположительных ионов с последующим разрушением поверхностного слоя. Такой процесс разрушения принято называть электрохимической коррозией.

Биологическая коррозия — разрушение материала под непосредственным воздействием растительных и животных организмов, а также микроорганизмов. Высшие растительные организмы (корневая система, стебли, листья, семена и пр.) в процессе жизнедеятельности продуцируют различные виды веществ, большинство из которых по отношению к строительным материалам являются агрессивными. Животные организмы вызывают биоповреждения материалов как непосредственно своим механическим воздействием (грызуны, птицы и пр.), так и продуктами своей жизнедеятельности. Низшие растительные организмы и микроорганизмы (водоросли, лишайники, мхи, грибки, бактерии и пр.) разрушают поверхностные слои бетонов и создают условия для гниения конструкций из древесины.

Коррозию, возникающую в результате воздействия на строительные материалы продуктов технологической переработки органических веществ как биогенного (фрукты, овощи, растительные масла, кровь, соки, жиры и пр.), так и небиогенного происхождения (нефть, уголь, сланцы, известняки-ракушечники, выхлопные газы, копоть и пр.), принято называть органогенной коррозией.

Факторы, влияющие на коррозионную стойкость строительных материалов

Коррозионная стойкость строительных материалов зависит от многих факторов, которые подразделяются на внешние и внутренние.

Внешние факторы определяют агрессивность среды и ее влияние на материал. К ним можно отнести рН среды, температуру и ее перепад, а также интенсивность воздействия среды на материал.

Водородный показатель раствора электролита, характеризующий активность в нем ионов водорода, является весьма важным фактором, влияющим на процесс химической коррозии. Скорость коррозии силикатов в растворах электролитов в значительной степени зависит от характера растворов и протекает по-разному в кислых, щелочных или нейтральных средах.

Вода как участник технологического процесса рассматривается в двух аспектах: как нейтральный компонент, служащий для придания смеси необходимых свойств, и как растворитель и переносчик ионов.

Причиной коррозии многих строительных материалов в воде или в других электролитах является термодинамическая неустойчивость соединений, содержащихся в этих материалах, которая связана с развитием процессов гидратации, сопровождающихся экзотермическими или эндотермическими эффектами.

Экзотермический эффект свидетельствует о созидательном процессе в материале, например при гидратации цемента, а эндотермический эффект — о разрушительном, например при гидратации керамического черепка.

Поведение химических элементов в растворах во многом зависит от величины радиусов ионов и их валентности, а точнее, от величины отношения валентности иона к его радиусу, называемой ионным потенциалом:

РI = V/R,

где РI — ионный потенциал, ?-1 ;

V — валентность, ед.;

R — ионный радиус, ?..

Чем меньше ионный потенциал, тем сильнее проявляются основные свойства элементов, чем он больше — кислотные. Например, К и Na характеризующиеся малыми ионными потенциалами, соответственно 0,75 и 1,02, обладают резко выраженными щелочными свойствами. Элементы, имеющие ионный потенциал в пределах 4,7... 8,6, обладают амфотерными свойствами, а при РН> 8,6 кислотными свойств

Сравнивая активность элементов по ионному потенциалу, получим следующее распределение катионов в порядке убывания:

SiO2 ? TiO2 ? MgO ? Fe ? Cu

Высокий ионный потенциал катиона кремния обусловливает образование прочных анионных групп с ионами кислорода.

Температура — одна из важнейших переменных, влияющих на коррозионную и эрозионную стойкость. Повышение температуры, как правило, способствует усилению коррозионного воздействия за счет увеличения предельной растворимости, скорости диффузии и интенсивности химических реакций.

Перепады температур в системе вызывают термический перенос массы, что может сделать непригодным применение материала, который в нормальных условиях имеет малую растворимость.

Интенсивность воздействия среды влияет на скорость коррозионных процессов. Увеличение объема среды, находящейся в контакте с материалом, может усилить коррозионное воздействие за счет увеличения средней скорости растворения материала.

Внутренние факторы — это состав, структура материала и его свойства.

Ввиду особенностей строения различных материалов влияние на них внешних факторов неодинаково, и поэтому коррозионную стойкость обжиговых, плавленых, гидратационных материалов, а также металлов и древесины рассматривают раздельно. И мы с Вами начнем изучение свойств конкретных материалов со следующей лекции.

Общие принципы повышения коррозионной стойкости

Коррозионная стойкость определяется массой материала, превращенного в продукты коррозии в единицу времени с единицы площади, находящегося во взаимодействии с агрессивной средой, а также размером разрушенного слоя в мм за год.

Основными принципами повышения коррозионной стойкости строительных изделий и конструкций являются:

- подбор состава композиций, отличающегося низкой активностью в агрессивных средах;

- использование специальных покрытий для химической, тепловой и механической защиты изделий и конструкций от воздействия агрессивных сред.

Следует отметить, что основным критерием, определяющим эксплуатационные свойства строительных материалов, является время. Поэтому такие характеристики материала, как водостойкость, морозостойкость и коррозионная стойкость, являются не истинно физическими свойствами, а лишь условными показателями изменения состояния его структуры при продолжительном постоянном или циклическом воздействии на материал агрессивной среды.

Сохранение эксплуатационных характеристик во времени принято называть долговечностью строительных материалов.

ЗАКЛЮЧЕНИЕ

Рассматривая последовательно цепочку «состав — химические связи — структура — свойства», следует выделить следующие основные моменты:

1. Состав - это качественная и количественная характеристика веществ, составляющих сырьевые материалы или готовые изделия. Состав является химической и энергетической основой вещества или материала. Он определяет химический потенциал системы, ее энергетическое состояние, термодинамику ее состояния или перехода, а, следовательно, тип и энергию химической связи.

Состав — это первое, основополагающее звено в цепочке выше указанной взаимосвязи, которое играет главенствующую роль в создании требуемой структуры материала и определяет основные параметры технологии его получения.

2. Химические связи — это результат взаимодействия атомов, ионов, молекул, обусловливающий их устойчивое состояние в виде различных веществ и материалов.

Тип химической связи определяет характер и устойчивость конденсированной системы, предопределяет механические, физические, химические свойства материала, такие, как прочность, растворимость, реакционная способность, теплопроводность, темпе плавления и др., а также устойчивость кристаллической или аморфной структуры.

Современное материаловедение, в том числе строительное материаловедение, рассматривает взаимосвязь «химические связи — свойства» в аспекте повышения качества материалов. Все свойства строительных материалов, их поведение в период эксплуатации, устойчивость, инертность или подверженность взаимодействию со средой, приводящая к коррозионным процессам, связаны с особенностями электронного строения атома, характером связи с другим атомом. Зная особенности электронно-атомного строения вещества, можно изменять и совершенствовать химическую связь, изменяя, совершенствуя структуру и свойства материалов.

3. Структура — совокупность устойчивых связей, обеспечивающих соединению (материалу) единое целое.

Структуру тела (материала) можно классифицировать по двум основным признакам: по процессу формирования и по определенному состоянию.

По первому признаку структура подразделяется на коагуляционную, конденсационную и кристаллизащюнную, а по второму — на кристаллвческую (устойчивую), аморфвую (неустойчивую) и аморфно-кристаллическую (сложную).

Большинство гидратационных материалов образует кристаллическую структуру, большинство обжиговьих материалов — аморфно - кристаллическую или стеклокристаллическую, а большинство плавленых — аморфную или стеклообразную структуру.

Стеклокристаллическая структура подразделяется на два вида:

образующаяся из кристаллической структуры по разрушительному процессу (традиционная керамика);

образующаяся из стеклообразной структуры по созидательному процессу (ситаллы).

Тип и характер структуры определяют весь комплекс свойств строительных материалов.

4. Свойство — особенность вещества или материала, проявляющаяся при взаимодействии с окружающей средой или другим веществом (материалом).

Любой материал с определенным внутренним строением, микро- и макроструктурой и свойствами можно представить в виде системы (наподобие термодинамической), элементы которой взаимосвязаны и роль каждого элемента строго определена.

В данном случае координатами такой системы могут быть: масса, определяющая химические поля взаимодействия, а следовательно, химические свойства; объем, определяющий поля напряжения, а следовательно, механические свойства; температура, определяющая тепловые поля, а следовательно, термические свойства материала.

Свойства материала взаимосвязаны и выполняют роль индикаторов, которые в любой период его существования характеризуют то или иное состояние системы, т.е., по аналогии с термодинамической системой, являются основными параметрами материала как системы.

Взаимосвязь свойств наглядно прослеживается при рассмотрении теллофизическмх и деформативных свойств материала.

Свойство — это качественная, отличительная характеристика вещества, материала или изделия. В материаловедении эта характеристика является заключительным звеном в цепи “состав — химическая связь — структура — свойство”, а при разработке технологии и создания нового материала — основным, определяющим параметром или условием его получения.

Лекция 7. МАТЕРИАЛЫ И ИЗДЕЛИЯ, ПОЛУЧАЕМЫЕ СПЕКАНИЕМ И ПЛАВЛЕНИЕМ

К.т.н., доцент В.П. Петров

7.1. Керамические материалы.

1. Общие сведения

Керамика — собирательное название широкой группы искусственных каменных материалов, получаемых формованием из глиняных смесей с минеральными и органическими добавками с последующей сушкой и обжигом. На древнегреческом языке «керамос» означало гончарную глину, а также изделия из обожженной глины.

Керамика — древнейший строительный материал. Археологами обнаружены остатки зданий и сооружений из керамического кирпича в Древнем Египте и Ассирии, датируемые III—I тысячелетиями до нашей эры. Кирпич был известен в Древней Индии и Китае. В Древней Греции керамика применялась для кровель и украшения фасадов. Первый храм Геры в Олимпии (VII в. до н. э.) имел черепичную крышу и украшения из терракоты.

Простота технологии и неисчерпаемая сырьевая база для производства керамических изделий самых разнообразных видов предопределили их широкое и повсеместное распространение. Этому способствовали также высокая прочность, долговечность и декоративность керамики. И в настоящее время керамика остается одним из основных строительных материалов, применяемых практически во всех конструктивных элементах зданий и сооружений.

По назначению керамические изделия делят на следующие виды:

• стеновые (кирпич и керамические камни);

• кровельные (черепица);

• изделия для облицовки фасадов (лицевой кирпич, терракотовые

плиты, мозаичные плитки и др.);

• изделия для внутренней облицовки стен;

• плитка для полов;

• санитарно-технические изделия (умывальники, унитазы и трубы);

• специальная керамика (кислотоупорная, огнеупорная, теплоизояционная);

• заполнители для легких бетонов (керамзит и аглопорит).

Материал, из которого состоят керамические изделия после обжига, называют керамическим черепком.

В зависимости от структуры черепка керамические материалы разделяются на две основные группы: пористые и плотные.

Пористыми условно считают изделия, у которых водопоглощение черепка более 5 % по массе (в среднем 8...20 %). К ним относятся все виды кирпича и стеновых камней, черепица, облицовочные плитки.

Плотными считают изделия, водопоглощение черепка которых менее 5 % (обычно 2...4 %); эти изделия практически водонепроницаемы. К ним. относятся плитки для полов, санитарный фарфор и т. п.

2. Сырье для производства керамики

Сырьевая масса для изготовления керамических материалов состоит из пластичных материалов (глин) и непластичных (отощающих и выгорающих добавок, плавней и др.). Глины обеспечивают получение удобоформуемой связной массы и после обжига прочного и водостойкого черепка. Непластичные добавки улучшают технологические свойства сырьевой массы (облегчают сушку, уменьшают усадку и снижают температуру обжига) и придают материалу желаемые свойства (пористость, теплопроводность и т. п.).

Глины — основной сырьевой компонент керамики — осадочные горные породы, состоящие в основном из глинистых минералов — водных алюмосиликатов различного состава (каолинит А12О3 • 2SiO2 • 2Н2О, монтмориллонит А12О3 • 4SiO2 • Н2О и др.). Размер частиц глинистых материалов не превышает 0,005 мм; преобладающая форма частиц - пластинчатая. Благодаря своей гидрофильности и огромной площади поверхности глинистые частицы активно поглощают и удерживают воду. Именно глинистые минералы придают глине ее характерные свойства: пластичность при увлажнении, прочность при высыхании и способность к спеканию при обжиге.

Кроме глинистых минералов в глине содержатся более крупные частицы: пыль (0,005...0,16 мм) и песок (0,16...5 мм). Они состоят из кварца, карбонатов кальция и магния и других минералов. Эти компоненты глин также влияют на ее технологические свойства и качество готовых изделий.

Глины, как сырье для керамики, оценивают комплексом свойств: пластичностью, связующей способностью, отношением к сушке и к действию высоких температур.

Пластичность — способность глиняного теста деформироваться под действием внешних механических нагрузок без нарушения сплошности и сохранять полученную форму после прекращения воздействий. Пластичность глин объясняется тем, что при увлажнении глины на поверхности глиняных частиц появляются тончайшие слои адсорбированной воды. Эти слои, с одной стороны, обеспечивают возможность скольжения частиц друг относительно друга, а с другой, связывают эти частицы силами поверхностного натяжения, что обеспечивает сохранение формы изделий после формования. Превалирование того или иного эффекта зависит от количества адсорбированной воды.

Пластичность оценивается количеством воды, необходимой для получения из глины удобоформуемой массы. Высокопластичные глины имеют высокую водопотребность и, как следствие, большую усадку при сушке.

Скорость сушки увлажненной глины определяется не скоростью испарения влаги с поверхности отформованного изделия, а скоростью миграции воды внутри глиняной массы от центра к поверхности. Глина, будучи материалом «водонепроницаемым», тормозит продвижение влаги через свою толщу, чем замедляет сушку.

Чем больше в глине частиц глинистых минералов, тем она больше требует воды, больше набухает, но труднее сохнет и дает большую усадку. Такие глины называют «жирными». Глины, содержащие много песчаных частиц, характеризуются небольшой усадкой и набуханием, достаточно легко сушатся, но пластичность, т. е. формовочные свойства, у нее пониженная. Такие глины называют «тощими».

Таким образом, для получения требуемой сырьевой массы для керамики нужно выполнить два противоречивых друг другу условия: смесь должна хорошо формоваться и легко сушиться.

Смеси с оптимальным соотношением глинистых и песчаных частиц получают, добавляя в жирную глину отощающие добавки. Кроме песка для этих целей используют золы ТЭС, шлаки и другие материалы.

Спекаемость — способность глины при обжиге переходить в камневидное состояние, в котором она совершенно не размокает в воде, объясняется следующим. При нагреве до 900... 1200°С в глине последовательно начинают протекать химические и физико-химические процессы, приводящие к полному и необратимому изменению ее структуры:

• удаление химически связанной воды (500...600° С);

• разложение обезвоженной глины на оксиды А12О3 и SiO2

.(800...900°С);

• образование новых водостойких и тугоплавких минералов (силлиманита А12О3 • SiO2 и муллита ЗА12О3 • 2SiO2 (1000... 1200° С);

• образование некоторого количества расплава из легкоплавких материалов глины (900... 1200° С).

Образование прочного черепка происходит за счет эффекта склеивания твердых частиц глины образовавшимся расплавом. При этом за счет сил поверхностного натяжения этого расплава происходит уменьшение объема материала, называемое огневой усадкой. В зависимости от вида глин огневая усадка составляет 2...6 %.

Полной усадкой называют сумму воздушной и огневой усадки; она обычно находится в пределах 6...18 %. Полную усадку необходимо учитывать при формовании сырцовых заготовок для получения изделий с заданными размерами.

Огнеупорность — свойство материалов, в том числе и глин, выдерживать действие высоких температур без деформаций.

Различные глины требуют определенных температур обжига и соответственно изделия из них имеют различную огнеупорность. По этому признаку глины делят на легкоплавкие, тугоплавкие и огнеупорные.

Легкоплавкие глины, содержащие большое количество примесей, плавятся при температуре ниже 1350° С. Из таких глин, называемых кирпичными, изготовляют кирпич, стеновые камни и черепицу.

Тугоплавкие глины, содержащие незначительное количество примесей, плавятся при температуре 1350... 1580° С. Применяют их для изготовления облицовочных керамических изделий, лицевого кирпича, канализационных труб.

Огнеупорные глины, почти не содержащие примесей, плавятся при температуре выше 1580° С. Их применяют для производства огнеупорных материалов.

Отощающие материалы вводят в состав керамической массы для снижения пластичности и уменьшения воздушной и огневой усадки глин. Они улучшают сушильные свойства глин. В качестве отощающих добавок используют песок, шамот, дегидратированную глину, золы ТЭС, гранулированные шлаки.

Шамот — зернистый (0,14...2 мм) материал, получаемый измельчением предварительно обожженной до температуры спекания глины. Его можно заменить измельченным браком керамических изделий. Шамот из огнеупорных глин используют для изготовления огнеупоров.

Дегидратированную глину получают нагревом до 650...750° С. При удалении кристаллизационной химически связанной воды глина необратимо теряет свойство пластичности.

Гранилурованный доменный шлак и золы ТЭС — отощители глин, используемые при производстве кирпича и другой грубой керамики. Это эффективный путь утилизации промышленных отходов.

Порообразующие добавки вводят в смесь для снижения плотности и, соответственно, теплопроводности керамических изделий. Для этого используют вещества, которые при обжиге:

• диссоциируют с выделением газа, например, СО2 (молотый мел,

доломит и т. п.);

• выгорают (древесные опилки, угольный порошок и т. п.).

Такие добавки одновременно являются и отощающими.

Пластифицирующие добавки — высокопластичные глины, а также поверхностно-активные вещества — пластификаторы СДБ, ЛСТ и др.

Плавни добавляют в глины в тех случаях, когда желательно понизить температуру ее спекания. В этом качестве используют полевые шпаты, железную руду, тальк и т. п.

Глазури и ангобы — отделочные слои на облицовочных керамических изделиях.

Глазури — стеклообразные лицевые покрытия различного цвета, прозрачные или глухие. Их получают нанесением на поверхность готовых изделий порошка из стекольной шихты и закреплением обжигом до плавления.

Ангобы — лицевые покрытия, выполненные из цветных глин, нанесенных на поверхность сырцовых изделий. В отличие от глазури ангоб не дает при обжиге расплава, а образует матовое керамическое покрытие.

Одна из главных проблем при глазуровании и ангобировании - обеспечение максимальной близости свойств (главным образом КЛТР) изделия и отделочного слоя во избежание растрескивания и отслоения отделочного слоя. Характерным видом брака подобного рода является цек — частая сетка трещин на поверхности глазури.

3. Основы технологии керамики

Все разнообразие керамических материалов производится в принципе по однотипной схеме, включающей в себя следующие переделы: добычу сырьевых материалов, подготовку сырьевой массы, формование изделий, сушку и обжиг.

Однако для получения изделий с различной структурой черепка и различной конфигурации применяют разные методы формования: литье, пластическое формование, полусухое и сухое прессование. В зависимости от метода формования производят подготовку сырьевой массы.

Основные изделия строительной керамики — кирпич и керамические камни, а также некоторые виды керамических плиток, черепицы и труб производят методом пластического формования. Этот метод формования наиболее прост и получил наибольшее распространение. Ниже рассмотрена схема производства керамики с использованием метода пластического формования на примере производства кирпича.

Производство кирпича методом пластического формования ведется на хорошо проработанной пластичной массе с влажностью 15...25 % из легкоплавких глин средней пластичности, содержащих 40...50 % песка.

Подготовка сырья в старину велась «естественным» образом: глина, добытая в карьере, в течение 1...2 лет выдерживалась в буртах под открытым небом. Периодическое намокание, замораживание и оттаивание разрушало природную структуру глины, вымывало из нее соли (вспомните белые высолы на современном кирпиче). После этого глину обрабатывали на глинорыхлителях и камнеотделительных валках и доводили до требуемой пластичности добавлением воды.

В настоящее время глину увлажняют паром и интенсивно обрабатывают на бегунах, дезинтеграторах и валках (это в какой-то мере заменяет вылеживание) до получения пластичной удобоформуемой массы без крупных каменистых включений (кусочки СаСО3 должны быть удалены или измельчены в порошок).

Качество массы и будущих изделий зависит от тщательности проработки сырьевых компонентов.

Формование кирпича-сырца производят на ленточном прессе, напоминающем мясорубку. Увлажненная и тщательно размятая глиняная масса продавливается винтовым конвейером через решетку в вакуумную камеру, где жгуты глины разбиваются вращающимся ножом для удаления воздуха из глиняной массы. Далее масса винтовым валом подается в конусную головку пресса, где окончательно уплотняется и продавливается сквозь формующую часть пресса — мундштук. Мундштук придает глиняной ленте, выходящей из пресса, определенную высоту и ширину. В мундштуке могут быть установлены керны, образующие каналы в выдавливаемой ленте; так получают пустотелый кирпич и трубы.

Глиняная лента нарезается автоматическим устройством на кирпич-сырец. Размер таких кирпичей несколько больше требуемого, так как в процессе последующей обработки глина дважды (при сушке и при обжиге) претерпевает усадку, достигающую 10... 15 %.

Сушка — важный и сложный этап производства кирпича. Главная трудность сушки массивного кирпича-сырца в том, что в глине перенос влаги затруднен (глина — водонепроницаемый материал), и поэтому быстрое высыхание глины с поверхности приводит не к ускорению сушки, а к растрескиванию кирпича-сырца. Это происходит из-за того, что поверхностный слой дает усадку при высыхании (до 7...10 %), а влажное ядро препятствует ей. Простейший способ предохранить кирпич от растрескивания — сушить его медленно, так, чтобы скорость испарения воды не превышала скорости ее миграции из внутренних слоев. Но этот путь снижает темпы производства.

Ускорить сушку можно, вводя в сырьевую смесь вещества, облегчающие миграцию влага к поверхности (например, опилки), или путем формования в кирпиче сквозных отверстий. Улучшение условий сушки пустотелого кирпича — залог более высокого качества материала.

При влажности кирпича-сырца 6...8 % его можно подавать на обжиг.

Для обжига используют печи различной конструкции от самых старых кольцевых, в которые кирпич укладывают и вынимают вручную, и до современных туннельных и щелевых, где кирпич обжигается в процессе продвижения его по печи. Температура обжига зависит от состава сырьевой массы и обычно находится в пределах 950... 1000° С. Необходимую температуру обжига следует строго выдерживать.

Полусухой способ производства кирпича отличается от пластического тем, что глина влажностью 6...7 % измельчается в порошок, из которого на специальных прессах поштучно формуется кирпич-сырец. Такой сырец не требует сушки — его сразу же после формования можно обжигать. Так как кирпичи полусухого прессования (рис. 5.2, 6) получаются более плотными, в них делают несквозные пустоты (так называемый пятистенный кирпич). Кирпич полусухого прессования имеет гладкие грани и значительно меньше дефектов, чем кирпич пластического формования, но в то же время он менее морозостоек.

Относительно небольшой выпуск кирпича полусухого прессования объясняется сложностью прессов для формования сырца и невысокой их производительностью.

Производственные дефекты. Из-за слишком быстрой сушки и нагрева при обжиге кирпич деформируется и на его поверхности появляются трещины. При недостаточной температуре обжига получается недожженный кирпич (недожог) алого цвета, который не применяют из-за низкой прочности, водо- и морозостойкости.

При слишком высокой температуре обжига получается пережженный фиолетово-бурый кирпич (пережог — «железняк») повышенной плотности, с оплавленной поверхностью и искаженной формой.

У керамических изделий встречается скрытый дефект, называемый «дутик», который может проявиться не сразу, а после того, как кирпич (камень) достаточное время находился во влажном состоянии. В этом случае происходят выколы и разрушение поверхности. В месте откола хорошо виден белый порошок или белая тестообразная масса.

Причина таких дефектов — небрежность подготовки сырьевой массы. Если в исходном сырье встречаются куски известняка или другой карбонатной породы состава СаСО3, то в случае, когда сырьевая масса не измельчается достаточно тонко, в свежеотформованном изделии могут оказаться кусочки известняка размером 1 ...5 мм. При обжиге они превращаются в оксид кальция (негашеную известь):

СаСОз ? СаО + CO2?

Негашеная известь при контакте с водой превращается в гидроксид кальция («гасится») с увеличением в объеме. Это приводит к выколам и разрушению изделий.

4. Стеновые и кровельные керамические материалы

Основная область применения керамики в строительстве — материалы для ограждающих конструкций: стеновые (кирпич и керамические камни) и кровельные (черепица). Этот вид керамики за много сотен лет применения хорошо зарекомендовал себя во всем мире.

Стеновые материалы — это кирпич и камни (последние отличаются от кирпича большими размерами). Самые первые постройки из кирпича обнаружены в Древнем Египте и Ассирии и относятся к III—I тысячелетию до н. э. Этот кирпич имел в плане форму, близкую к квадратной, со сторонами 300...650 мм и толщиной 30...80 мм. Подобный кирпич позже применялся в Древней Греции и Византии, где его называли «плинфа» (от гр. plinthos — кирпич). Плинфа использовалась и в древнерусском зодчестве. Так, при строительстве Софийского собора в Киеве использовалась плинфа размером около 400 х 400 см и толщиной 30...40 мм. Такая форма древнего кирпича объясняется, видимо, в основном технологическими причинами: проще формовать и легче сушить.

Только в XV в. плинфу сменил похожий на современный «Аристотелев кирпич» (289х189x67 мм). Первый российский кирпич, предусматривавший перевязку швов, был «Государев кирпич». В современных размерах кирпич был узаконен стандартом в 1927г. Какого-либо общемирового стандарта на размеры кирпича не существует. Однако размеры и масса кирпича лимитируются размером и силой человеческой руки.

Кирпич керамический обыкновенный. В соответствии с действующими стандартами кирпич выпускают обыкновенный размером 250 х 120 х 65 мм; реже производится утолщенный — 250 х 120 х 88 мм и модульный — 288 х 138 х 65 мм. Поскольку масса одного кирпича не должна превышать 4,3 кг, то утолщенный и модульный кирпичи обычно делают с пустотами; кирпич полусухого прессования также производится с пустотами (но пустоты в нем конические и несквозные).

Приняты следующие названия граней кирпича: большая — постель 1, боковая длинная — ложок 2, торцовая — тычок 3.

Плотность обыкновенного полнотелого керамического кирпича - 1600... 1800 кг/м3; пористость - 28...35 %; водопоглощение - не менее 8%.

Основная характеристика качества кирпича - марка по прочности, определяемая по результатам испытания кирпича на сжатие и изгиб. Установлено 8 марок: от 75 до 300 (табл. 6.1).

По морозостойкости для кирпича установлены четыре марки: F15, F25; F35 и F50. При оценке морозостойкости испытания на «замораживание — оттаивание» проводят до появления внешних повреждений (трещин, отколов, шелушения поверхности), не допускаемых стандартом.

Стандарт допускает довольно большие отклонения в размерах и форме кирпича, которые объясняются большой и неравномерной усадкой кирпича в процессе изготовления. Кирпич считается удовлетворяющим стандарту, если отклонения по размерам и форме не превышают:

по длине ± 5 мм, ширине ± 4 мм, толщине ± 3 мм;

непрямолинейность граней и ребер, не более: по постели — 3 мм, по ложку — 4 мм;

сквозные трещины на ложковой и тычковой гранях — не более одной при протяженности ее по постели не более 30 мм;

отбитости и притупленности ребер и углов — не более двух глубиной более 5 мм и длиной 10... 15 мм.

Обыкновенный керамический кирпич благодаря достаточно высоким показателям физико-механических свойств и долговечности широко применяют в современном строительстве для кладки наружных и внутренних стен зданий, фундаментов, дымовых труб и других конструкций.

Кирпич полусухого прессования нельзя применять для кладки цоколей, фундаментов и наружных стен влажных помещений.

На складах кирпич хранят в штабелях высотой до 1,6 м, уложенным на ребро (ложковую грань).

При механизированной погрузке, разгрузке и транспортировании используют деревометаллические поддоны, на которые кирпич укладывают на ребро с перевязкой или «в елочку» (с наклоном в 45° к центру пакета). Чтобы уложить кирпич «елочкой», к торцам поддона прибивают треугольные бруски. Благодаря такой укладке пакеты с кирпичом можно перевозить на обычных автомобилях без дополнительных креплений. Погрузку, разгрузку и подачу пакетов на рабочее место выполняют с применением специальных футляров. Без поддонов кирпич перевозят уложенным в штабель с перевязкой; транспортирование навалом запрещается, так как при этом много кирпича бьется.

Пустотелый кирпич и керамические камни. У обыкновенного керамического кирпича есть два существенных недостатка: относительно высокая плотность (1600... 1800 кг/м3) и небольшие размеры. Высокая плотность предопределяет и большую теплопроводность кирпича, и, как следствие, большую толщину стен (в средней полосе России традиционная толщина стен 51 и 64 см) и их большую массу.

Небольшой размер обыкновенного кирпича объясняется двумя причинами:

• масса кирпича, укладываемого вручную, не должна превышать 4,3 кг;

• получение крупного массивного керамического изделия затруднительно, т.к. сушка и обжиг таких изделий протекает долго и, как правило, сопровождается большими деформациями и растрескиванием изделий.

Решение этой проблемы возможно путем формования крупноразмерных керамических изделий со сквозными пустотами. Такие кирпичи называют «эффективной керамикой».

Пустотелыми считаются кирпич и камни, объем пустот которых более 13%. Форма и размер пустот могут быть различными. Расположение пустот преимущественно вертикальное, но допустим выпуск кирпича и камней с горизонтально расположенными пустотами.

Керамическими камнями называют штучные стеновые изделия размером от 250 х 120 х 138 мм (сдвоенный по высоте кирпич) и до укрупненных камней 510 х 260 х 219 мм для кладки стен в «один камень». Применение керамических камней позволяет значительно ускорить кладочные работы.

Прочностные свойства (марки) и морозостойкость пустотелых кирпича и камней такие же, как у обыкновенного керамического кирпича.

Дополнительное снижение плотности и улучшение теплотехнических показателей керамического кирпича и камней можно достичь, включая в сырьевую массу выгорающие добавки (опилки, угольную мелочь и т. п.) или вспенивая глиняную массу. Используя технологию поризации керамического черепка, ЗАО «Победа-Кнауф» (Санкт-Петербург) организовало производство пустотелых керамических камней (250 х 120 х 142 мм) с плотностью 950 кг/м3 и маркой по прочности 150 и 200 (кгс/см2) при морозостойкости не ниже F35; а крупноформатные блоки того же предприятия размером 510 х 260 х 219 мм имеют пустотность 52 % и среднюю плотность 800 кг/м3 (на 20 % легче воды); марка блоков по прочности 50... 100 (кгс/см2) и морозостойкость не ниже F35. Теплопроводность кладки из таких блоков 0,20 Вт/(м • К), что в 4 раза ниже, чем из полнотелого кирпича.

Пустотелый кирпич и камни нельзя использовать для кладки фундаментов, подвалов, цоколей и других частей зданий, где они могут контактировать с водой. Замерзание воды, попавшей в пустоты кирпича или камней, сразу приводит к их разрушению.

Кровельные материалы. Керамическая черепица — старейший искусственный кровельный материал, применявшийся с давних пор практически во всех странах мира. Особенное распространение полупила черепица в европейских странах, Японии, Китае; при этом форма и цвет черепицы у разных народов были различными. До сих пор используют старинные виды черепицы: желобчатую «татарскую», волнистую «голландскую» и др.

Сырьем для черепицы служат кирпичные глины, только качество их подготовки должно быть выше. Ленточную черепицу формуют на таких же прессах, как кирпич. Штампованную прессуют поштучно. В остальном, технология черепицы аналогична технологии кирпича.

Черепичная кровля декоративна и очень долговечна. Недостатки ее: большой вес и трудоемкость устройства. Черепица требует мощной стропильной системы; минимальный угол наклона кровли 30° (для желобчатой, укладываемой на растворе,— 15°).

5. Отделочные керамические материалы

Керамика в роли отделочного материала применяется издавна и очень широко. Это объясняется как декоративностью керамики, так и ее стойкостью и долговечностью. Облицовка керамикой не только придает декоративность, но и защищает конструкцию от внешних воздействий. Различают отделочную керамику для наружной и внутренней облицовки, а также для покрытия полов. Для каждой области применения используют керамику с различным строением черепка (плотным или пористым) и соответственно с разными свойствами.

Материалы для наружной облицовки зданий и сооружений включают в себя лицевой кирпич, крупноразмерные облицовочные плиты и архитектурные детали (терракоту) и плитки различных размеров.

Лицевой кирпич отличается от обычного тем, что у него ложок и тычок (или 2 тычка) имеет повышенное качество поверхности: гладкая без дефектов поверхность, ровная окраска, возможна рельефная обработка поверхности или ее офактуривание (глазурование, ангобирование). Лицевой кирпич изготовляют как из беложгущихся, так и из красножгущихся глин. Придание требуемого цвета возможно окрашивающими добавками (оксиды железа, марганца и т. п.). Сырьевая масса для лицевого кирпича готовится более тщательно: недопустимо присутствие крупных каменистых включений, особенно известняковых.

Марки лицевого кирпича такие же, как и у обычного; морозостойкость несколько выше: не ниже F25. Как правило, лицевой кирпич — пустотелый.

Лицевым поверхностям кирпича можно придавать рельеф обработкой влажных сырцовых заготовок гребенками или рельефными валками.

Декорируют лицевой кирпич ангобированием и двухслойным формованием. Эти методы позволяют экономить дефицитные беложгущиеся глины.

Особенно декоративен глазурованный кирпич. Глазурь позволяет получать любые цветовые оттенки и сохранять их яркость в течение длительного времени; она почти не загрязняется и легко моется. Долговечность такой отделки — десятки и даже сотни лет. Для зданий с кирпичными стенами отделка лицевым кирпичом — самый эффективный вид отделки, так как она одновременно является частью стены и выполняет все ее функции.

Керамические плиты для фасадной отделки выпускают в широком ассортименте размеров, цветов и фактуры поверхности.

Коврово-мозаичная плитка очень облегчает отделку стен путем простого втапливания ковра в раствор (или бетон) и последующего смывания бумаги после затвердевания раствора. Такая отделка может производиться как на заводе одновременно с формованием стеновых панелей, так и в построечных условиях по свежеуложенной штукатурке. Плитки керамические фасадные применяют для облицовки наружных стен кирпичных зданий, наружных поверхностей железобетонных стеновых панелей, подземных переходов и других элементов зданий и сооружений. Плитки выпускают различных размеров (от 120 х 65 до 300x200 мм), цветов и фактуры поверхности. Плитки изготовляют методом полусухого и пластического прессования. Морозостойкость плиток F35 и F50. Тыльная сторона плиток имеет рифление для обеспечения сцепления с раствором (бетоном) (рис. 5 J).

Крупноразмерные керамические плиты выпускают с плотным черепком (водопоглощение менее 1 %) размером от 500 х 500 до 1000 х 1000 мм и толщиной 6... 10 мм. Эти плиты крепят на фасаде с помощью металлических раскладок. Один из вариантов таких плит называют керамическим гранитом.

Терракота (от лат. terra cotta — жженая земля) — крупноразмерные облицовочные изделия в виде плит, частей колонн, наличников и других архитектурных деталей.

Терракота возникла в Древней Греции, как замена облицовки из натурального камня. Впоследствии в различные исторические периоды терракота многократно входила в моду и широко использовалась в строительстве. Последний период увлечения терракотовой облицовкой в нашей стране пришелся на 40-50-е годы. В этот период терракотовые плиты и архитектурные детали использовались для облицовки зданий Московского университета (МГУ), всех высотных домов в Москве и многих многоэтажных жилых домов того периода в Москве, Киеве и других крупных городах.

Терракота — очень долговечный и декоративный облицовочный материал, незначительно уступающий природному камню по свойствам, но значительно менее трудоемкий в производстве. Терракотовые изделия формуются из пластичных глиняных масс: плиты на ленточных прессах, а архитектурные детали с помощью форм (гипсовых, деревянных и металлических). Физико-механические показатели терракотовых изделий: марка по прочности — не ниже 100кгс/см2, морозостойкость не менее F50.

Плитку для внутренней облицовки выпускают разнообразных типоразмеров. Чаще других используют плитку размером 150 х 150 мм и разнообразные элементы к ней — уголки, фризы и т. п. Такую плитку часто называют «кафельной». Это название пошло от фаянсовых изделий коробчатой формы с глазурованной поверхностью (от нем. Kachel — глиняная плошка), использовавшихся в XVII—XIX вв. для облицовки печей в жилых и общественных зданиях; по-русски их называли «изразцы» (от старослав. образить — украсить) (рис. 5.8).

Плитки для внутренней облицовки имеют пористый черепок и с лицевой стороны покрыты глазурью. Глазурь не только придает декоративный вид, но и делает плитки водостойкими и химически стойкими и гигиеничными. Такие плитки широко применяются для облицовки стен санитарно-технических узлов и кухонь в жилых и общественных зданиях, в больницах, на предприятиях пищевой и химической промышленности, вестибюлей и лестничных клеток. Нельзя использовать такие плитки для настилки полов (глазурь легко царапается) и для наружной облицовки (пористый черепок зимой быстро разрушится).

Плитку для полов изготовляют из тугоплавких глин методом сухого или полусухого прессования, обжигая их до полного спекания. Такие плитки почти не имеют пор и практически водонепроницаемы. В соответствии со стандартом их водопоглощение не должно быть выше 4 % (как правило, оно не более 1...2 %). Такие плитки часто называют «метлахские» (от названия немецкого города Meftlach, где было одно из первых производств подобных плиток).

Плитки могут быть окрашены в массе или иметь окрашенным только верхний слой. Поверхность плиток большей частью гладкая, но производят плитки и с фактурной поверхностью (например, имитирующие грубообработанный камень или древесину). Плитки отличаются высокой износостойкостью и прочностью, стойки к действию воды и химических реагентов, декоративны и легко моются. Размеры плиток от самых мелких (23 х 23 мм) мозаичных до плиток среднего размера (300 х 300 мм). Среди материалов для полов керамическая плитка отличается высоким теплоусвоением: такое покрытие пола называют «холодным».

В странах с теплым климатом (Южная Европа, Египет, Сирия и т. п.) полы из керамической плитки применяют во всех помещениях, включая гостиные и спальные комнаты. В России полы из плиток принято устраивать в помещениях с сырым режимом эксплуатации к повышенными гигиеническими требованиями (санитарно-технические узлы, лаборатории, больницы, пищеблоки и т. п.). В настоящее время в связи с появлением подогреваемых полов круг помещений, где целесообразно применять керамические плитки для полов, будет расширяться.

Облицовка керамикой — один из самых экономически эффективных видов отделки фасадов и интерьеров зданий. Хотя первоначальная стоимость такой облицовки выше многих других видов отделки, но с учетом очень высокой долговечности керамики, в конечном счете, керамическая облицовка оказывается выгоднее. К несомненным достоинствам такой облицовки необходимо отнести архитектурную выразительность. Расчеты экологичности керамической облицовки также указывают, что она и с этой точки зрения оказывается одной из лучших.

6. Специальные виды керамических материалов

Санитарно-техническую керамику (раковины, унитазы, трубы, химическая посуда и т. п.) изготовляют из фаянса и фарфора.

Фаянс (от названия итальянского города Фаэнца) — разновидность тонкой керамики, получаемая из беложгущихся глин (60...65 %), кварца (30...35 %) и полевого шпата (3...5 %). Отформованное из пластичной массы и высушенное изделие подвергают первичному (так называемому «бисквитному») обжигу при температуре 1250... 1280°С; после чего на его поверхность наносится глазурная масса и производится повторный обжиг (1050...1150° С) для глазурования. Глазурование фаянса необходимо, так как он имеет пористый черепок (П = 20...25 %) и высокое водопоглощение.

Фарфор (от перс. фагефур) — изделия тонкой керамики с плотным черепком — получают так же, как и фаянс из беложгущихся глин (около 50 %), но с большим содержанием полевых шпатов (20...24 %) и меньшим содержанием кварца (20...25 %). Фарфор имеет плотный, полностью спекшийся черепок, просвечивающий в тонком слое. Фарфоровые изделия санитарно-технического назначения также покрывают глазурью для придания им гладкости и повышения санитарно-гигиенических свойств.

Керамические санитарно-технические изделия отличаются декоративностью, универсальной химической стойкостью; благодаря твердой и гладкой поверхности они легко чистятся, длительное время сохраняя свои свойства. Недостаток таких изделий, как и керамики в целом, - хрупкость. Несмотря на это, керамика остается лучшим материалом для санитарно-технических изделий.

Канализационные трубы изготовляют из пластичных тугоплавких глин и покрывают глазурью снаружи и изнутри, что обеспечивает их полную водонепроницаемость, химическую стойкость и высокую пропускную способность. Такие трубы выдерживают гидростатическое давление, более 0,2 МПа.

Керамические трубы имеют небольшую длину 800... 1200 мм, но довольно большой диаметр 150...600 мм. Трубы соединяются друг с другом с помощью раструбов, отформованных на одном конце каждой трубы..

Дренажные трубы для мелиоративных работ изготовляют из кирпичных высокогатастичных глин. Выпускают гладкие неглазурованные трубы, фильтрующие через свою толщу, и глазурованные с раструбами и перфорацией на стенках.

Клинкерный (дорожный) кирпич изготовляют из тугоплавких глин обжигом до полного спекания. Он имеет меньшие размеры (220 х 110 х 65 мм), чем обыкновенный стеновой кирпич, низкое водопоглощение (2...6 %), высокую прочность при сжатии (40...100 МПа) и морозостойкость не менее F100. Такой кирпич используют для мощения дорог и тротуаров, устройства полов промышленных зданий, кладки канализационных коллекторов.

Огнеупорные материалы получают по керамической технологии (формование, сушка, обжиг) из различных сырьевых компонентов. Их разделяют на огнеупорные (температура размягчения 1580..1770°С), высокоогнеупорные (1770...2000°С) и высшей огнеупорности (> 2000°С). В зависимости от химико-минерального состава огнеупоры могут быть кремнеземистые, алюмосиликатные, магнезиальные (на основе MgO), хромитовые, графитовые (углеродистые). Выбор огнеупора производят по двум показателям: температуре размягчения и стойкости в той среде, где он будет работать (расплавы стекла, шлаков или металла, химически активные газы и т. п.). Наибольшее применение в строительстве имеют кремнеземистые и алюмосиликатные огнеупоры.

Кремнеземистые огнеупоры (основной компонент SiO2) по строению могут быть стеклообразные (кварцевое стекло) и кристаллические (динасовые огнеупоры).

Кварцевое стекло хорошо работает при температурах до 1000°С; при более высоких температурах оно расстекловывается (кристаллизуется) и крошится.

Динасовые огнеупоры получают обжигом при температуре около 900°С кварцевого сырья (молотый кварцевый песок с добавкой известковой или другой связки). Динасовые огнеупоры содержат не менее 93 % SiO2 в виде устойчивых к высоким температурам модификаций тридимита или кристобалита. Огнеупорность — 1600... 1700°С. Их применяют для сводов стеклоплавильных и стекловаренных печей.

Алюмосиликатные огнеупоры делят на три группы: полукислые, шамотные и высокоглиноземистые.

Полукислые огнеупоры изготовляют обжигом кварцевых пород на глиняной связке (содержание SiO2 > 65 %; А12О3 < 28 %). Огнеупорность-1580... 1700°С.

Шамотные огнеупоры получают обжигом смеси шамота и огнеупорной глины. Они содержат 30...35 % А12О3. Отличаются термостойкостью и шлакоустойчивостью. Огнеупорность таких материалов — до 1500°С Применяют в стекловаренной и цементной промышленности.

Высокоглиноземистые огнеупоры содержат более 45% А12О3; получают из бокситов. Их огнеупорность увеличивается с повышением содержания А12О3 и при 60 % и более глинозема составляет 2000°С. Применяют для кладки доменных и стекловаренных печей. .

Для обеспечения высокотемпературной тепловой изоляции выпускают легковесные огнеупоры с рт = 400... 1300 кг/м3 и пористостью соответственно 85...45 %. Использование легковесных огнеупоров существенно снижает расход топлива (в 2-3 раза) и продолжительность разогрева печей (в 3-4 раза).

7.2. Стекло, ситаллы и каменное литье

1. Общие сведения

Стеклами называют переохлажденные жидкости, не успевшие при остывании перейти в кристаллическое состояние. Иными словами стекла — это жидкости, имеющие бесконечно большую вязкость. Последнее и придает им многие свойства твердого тела. В отличие от истинно твердых тел стекла при нагревании не плавятся, а размягчаются, постепенно переходя в пластичное, а затем и в жидкое состояние. При охлаждении процесс идет в обратной последовательности. Еще одна отличительная черта стекол — изотропность — одинаковость свойств во всех направлениях.

Способность к образованию стекол характерна для многих минеральных и органических веществ. Наиболее ярко эта способность выражена у диоксида кремния (SiO2) и соединений на его основе — силикатов, к которым относится большинство природных минералов. В стеклообразном состоянии могут находиться и многие другие материалы, например, полимеры (всем известен термин «плексиглас» — органическое стекло). В последние годы даже металлы удалось получить в стеклообразном состоянии.

Стекла по сравнению с кристаллическими веществами обладают повышенной внутренней энергией (скрытой энергией кристаллизации), поэтому вещество в стеклообразном состоянии метастабилъно (термодинамически не устойчиво). Из-за этого обычное стекло при некоторых условиях, а иногда и самопроизвольно начинает кристаллизоваться (этот процесс в стеклоделии называют «зарухание» или расстекловывание). Расстекловывание является браком стеклоизделий.

Этот же процесс, но проводимый направленно с целью частичной или полной кристаллизации расплава, используется для получения стеклокристаллических материалов — ситаллов и каменного литья.

В строительстве, за малым исключением, применяют силикатное стекло, получаемое в промышленных масштабах из простейшего минерального сырья: кварцевого песка, мела, соды и других компонентов (далее вместо термина «силикатное стекло» будет использоваться термин «стекло»).

Прозрачность и возможность окраски стекла в любые цвета, высокая химическая стойкость, достаточно высокая прочность и твердость, электроизоляционные и многие другие ценные свойства делают стекло незаменимым строительным материалом. Его используют не только для сооружения светопрозрачных конструкций (окон, витражей, фонарей), но и как конструкционный и отделочный материал. В современном строительстве высотные здания часто имеют фасады, полностью выполненные из стекла с улучшенными декоративными, светоотражающими и теплозащитными свойствами. Кроме того, из стекла получают различные стехлоизделия (блоки, трубы, стеклопрофилит), эффективные теплоизоляционные материалы (пеностекло и стеклянную вату), а также стекловолокно и стеклоткани.

Стекла встречаются в природе в виде бесформенных непрозрачных кусков — например, вулканическое стекло обсидиан. Первые сведения о получении стекла человеком относятся к третьему-четвертому тысячелетию до н. э. Те стекла были непрозрачными (глухими) наподобие керамической глазури. Они варились в небольших тиглях и использовались как украшения.

Коренное изменение в производстве стекла произошло на рубеже нашей эры, когда были решены две важнейшие проблемы стеклоделия — варка прозрачного бесцветного стекла и формование изделий с помощью стеклодувной трубки. Первые листовые стекла получали, разрезая и распрямляя стеклянные цилиндры, формуемые выдуванием (их называли «халявы»). В XVII в. началось производство листового зеркального стекла отливкой на медные плиты. Массовое производство листового стекла большого размера стало возможным в конце XIX — начале XX в., когда появились большие ванные печи и новые методы выработки стекла.

Необходимо отметить, что на процесс стекловарения расходуется очень много энергии, и при этом в атмосферу поступает много вредных выбросов. Поэтому и экологически, и экономически целесообразно вырабатывать стеклоизделия из вторичного сырья (стеклобоя, стеклянной посуды и т. п.). Это оценили в большинстве стран Западной Европы, где до 80 % стекла получают именно таким образом.

2. Получение сгекла

Современное стекольное производство включает в себя три этапа: подготовка сырья, стекловарение и формование стеклоизделий.

Подготовка сырья. Химический состав обыкновенного оконного стекла по основным оксидам следующий: SiO2 —71...72 %; Na2O — 15...16%; СаО - 5...7%; MgO - 3...4%; A12O3 - 2...3 %; содержание Fe2O3 не более 0,1 %, так как оксиды железа придают стеклу зеленовато-коричневый («бутылочный») цвет и снижают светопропускание. Основные оксиды вводятся в сырьевую шихту в виде следующих веществ.

Кремнезем (SiO2) вводят в виде кварцевого песка, молотых кварцитов или песчаников. Основное требование к кремнеземистому сырью — минимальное количество примесей, особенно оксидов железа. Это основной стеклообразующий оксид, повышающий тугоплавкость и химическую стойкость стекла.

Глинозем (А12О3) поступает в сырьевую шихту в виде полевых шпатов и каолина. Его влияние на свойства стекла аналогично действию SiO2.

Оксид натрия (Na2O) вводят в стекло в виде соды и сульфата натрия. Na2O понижает температуру плавления стекла, повышает коэффициент термического расширения и уменьшает химическую стойкость.

Оксиды кальция (СаО) и магния (MgO) вводят в стекольную шихту в виде мела, мрамора, известняка, доломита и магнезита. Эти оксиды повышают химическую стойкость стекла.

В специальные стекла вводят оксиды бора, свинца, бария и др.

Вспомогательные сырьевые материалы делят по своему назначении: на следующие группы: осветлители — вещества, способствующие удалению из стекломассы газовых пузырей; обесцвечиватели — вещества, обецвечивающие стекольную массу; глушители — вещества, делающие стекло непрозрачным.

Красители для стекла могут быть молекулярными, полностью растворяющимися в стекломассе, и коллоидными, равномерно распределяющимися в стекломассе в виде мельчайших (коллоидных) частиц. К первым относятся соединения кобальта (синий цвет), хрома (зеленый), марганца (фиолетовый), железа (коричневый и сине-зеленые тона), а ко вторым — металлическое золото (рубиновый), серебро (желтый), селен (розовый).

Перед варкой стекла сырьевые материалы измельчают, тщательно смешивают в требуемых соотношениях, брикетируют и подают в стекловаренную печь.

Стекловарение. Обычное стекло получают в непрерывно действующих ванных печах с полезным объемом до 600 м3 и суточной производительностью более 300т. Для варки специальных (оптических, цветных и др.) стекол применяют периодически действующие ванные, а также горшковые печи.

Стекловарение — главнейшая операция стекольного производства. На первой стадии этого процесса — силикатообразовании — щелочные компоненты образуют с частью кремнезема силикаты, плавящиеся уже при 1000... 1200° С. В этом расплаве при дальнейшем нагревании растворяются наиболее тугоплавкие компоненты SiO2 и А12О3. Образующаяся при этом масса неоднородная по составу и насыщена газовыми пузырьками.

Удаление пузырьков и полная гомогенизация расплава осуществляется на второй наиболее длительной стадии стекловарения — стеклообразовании — при температуре 1400... 1600°С. Третья заключительная стадия — студка — охлаждение стекломассы до температуры, при которой она приобретает оптимальную для данного метода формования стеклоизделий вязкость.

Формование. Метод выработки (формования) зависит от вида изделия. Для получения строительного стекла используют вытяжку, прокат, прессование.

При охлаждении стекла вследствие низкой его теплопроводности в нем возникают большие градиенты температур, вызывающие внутренние напряжения. Наиболее опасным моментом с этой точки зрения является переход стекла от вязкопластического состояния к хрупкому, поэтому для снятия внутренних напряжений после формования производят отжиг — охлаждение по специальному режиму: быстрое до начала затвердевания стекломассы, очень медленное в опасном интервале температур (600..300° С) и вновь быстрое до нормальной температуры.

Основной вид строительного стекла — листовое. С начала XX в. большая часть листового стекла стала производиться (а в России производится и до сих пор) методом вертикального вытягивания на машинах ВВС. Так получают стекла толщиной до 6 мм.

В 1959 г. появился новый способ получения высококачественного стекла — флоат-метод (от англ. float — плавать), при котором горячая стекломасса выливается на поверхность расплавленного металла (обычно олова) и формуется на нем. Производительность таких установок до 3...4 тыс. м2/ч. Размер листов: ширина до 3 м; толщина от 2 до 25 мм. Преимущества флоат-метода — стабильная толщина листа и высокое качество поверхности, не требующее дальнейшей полировки. В Европе большая часть стекла вырабатывается именно этим методом.

3. Свойства стекла

Силикатные стекла отличаются необычным сочетанием свойств, высокой прочностью и ярко выраженной хрупкостью, свето- к радио прозрачностью, абсолютной водонепроницаемостью и универсальной химической стойкостью. Все это объясняется спецификой состава и строения стекла.

Плотность стекла зависит от химического состава и для обычных строительных стекол составляет 2400...2600 кг/м3. Плотность оконного стекла — 2550 кг/м'. Высокой плотностью отличаются стекла, содержащие оксид свинца («богемский хрусталь») — более 3000 кг/м3. Пористость и водопоглощение стекла практически равны 0 %.

Механические свойства. Стекло в строительных конструкциях чаще подвергается изгибу, растяжению и удару и реже сжатию, поэтому главными показателями, определяющими его механические свойства, следует считать прочность при растяжении и хрупкость.

Теоретическая прочность стекла при растяжении — (10...12)•103 МПа. Практически же эта величина ниже в 200...300 раз и составляет от 30 до 60 МПа. Это объясняется тем, что в стекле имеются ослабленные участки (микронеоднородности, дефекты поверхности, внутренние напряжения). Чем больше размер стеклоизделий, тем вероятнее наличие таких участков. Примером зависимости прочности стекла от размера испытуемого изделия служит стеклянное волокно. У стекловолокна диаметром 1...10 мкм прочность при растяжении 300...500 МПа, т. е. почти в 10 раз выше, чем у листового стекла. Сильно снижают прочность стекла на растяжение царапины; на этом основана резка стекла алмазом.

Прочность стекла при сжатии высока — 900... 1000 МПа, т. е. почти как у стали и чугуна. В диапазоне температур от — 50 до + 70° С прочность стекла практически не изменяется.

Стекло при нормальных температурах отличается тем, что у него отсутствуют пластические деформации. При нагружении оно подчиняется закону Гука вплоть до хрупкого разрушения. Модуль упругости стекла Е= (7...7,5) • 104 МПа.

Хрупкость — главный недостаток стекла. Основной показатель хрупкости — отношение модуля упругости к прочности при растяжении E/Rp. У стекла оно составляет 1300...1500 (у стали 400...460, каучука 0,4...0,6). Кроме того, однородность строения (гомогенность) стекла способствует беспрепятственному развитию трещин, что является необходимым условием для проявления хрупкости.

Твердость стекла, представляющего собой по химическому составу вещество, близкое к полевым шпатам, такая же, как у этих минералов, и в зависимости от химического состава находится в пределах 5...7 по шкале Мооса.

Оптические свойства стекла характеризуются светопропусканием прозрачностью), светопреломлением, отражением, рассеиванием и др. Обычные силикатные стекла, кроме специальных (см. ниже), пропускают всю видимую часть спектра (до 88...92 %) и практически не пропускает ультрафиолетовые и инфракрасные лучи. Показатель преломления строительного стекла (п = 1,50...1,52) определяет силу отраженного света и светопропускание стекла при разных углах падения света. При изменении угла падения света с 0 до 75° светопропускание стекла уменьшается с 90 до 50 %.

Теплопроводность различных видов стекла мало зависит от их состава и составляет 0,6...0,8 Вт/(м•К), что почти в 10 раз ниже, чем у аналогичных кристаллических минералов. Например, теплопроводность кристалла кварца — 7,2 Вт/(м•К).

Коэффициент линейного температурного расширения (КЛТР) стекла относительно невелик (для обычного стекла 9•10-6 К-1). Но из-за низкой теплопроводности и высокого модуля упругости напряжения, развивающиеся в стекле при резком одностороннем нагреве (или охлаждении), могут достигать значений, приводящих к разрушению стекла. Это объясняет относительно малую термостойкость (способность выдерживать резкие перепады температур) обычного стекла. Она составляет 70...90° С.

Звукоизолирующая способность стекла довольно высока. Стекло толщиной 1 см по звукоизоляции приблизительно соответствует кирпичной стене в полкирпича — 12 см.

Химическая стойкость силикатного стекла — одно из самых уникальных его свойств. Стекло хорошо противостоит действию воды, щелочей и кислот (за исключением плавиковой и фосфорной). Объясняется это тем, что при действии воды и водных растворов из наружного слоя стекла вымываются ионы Na+ и Са++ и образуется химически стойкая пленка, обогащенная SiO2. Эта пленка защищает стекло от дальнейшего разрушения.

4. Листовое стекло

Основной вид стекла, применяемый в строительстве, — листовое стекло, используемое для остекления оконных и дверных проемов, витрин и т. п. Наряду с этим все шире развивается выпуск листового стекла со специальными свойствами, например, теплопоглощающего, светоотражающего, увиолевого, защитного, декоративного и др.

Листовое оконное стекло вырабатывается шести марок толщиной 2,5; 3; 4; 5 и 6 мм. Ширина листов — 250... 1600 мм, длина — до 2200 мм. Масса 1 м2 — 2...5 кг. Светопропускание — не менее 87%. К дефектам оконного стекла относятся газовые включения (пузырьки), свиль и «полосность» (неровность поверхности).

Витринное стекло — листовое стекло толщиной 6... 10 мм и размером до 3500 х 6000 мм. Витринное стекло, как правило, делают полированным.

Светорассеивающее стекло пропускает свет, но не дает сквозной видимости. Оно может быть матовое или узорчатое. Матовое получают пескоструйной обработкой или обработкой в парах плавиковой кислоты (HF). Узорчатое получают методом горизонтального проката на фигурных вальцах. Оригинальный метод используется для получения стекла под названием «мороз»: узор получается при помощи столярного клея, наносимого на поверхность стекла.

Увиолевое стекло — стекло, пропускающее большую долю ультрафиолетовых лучей (45...75 %), получают из сырья с минимальными примесями оксидов железа, хрома и титана. Такие стекла применяют в лечебных учреждениях, для остекления оранжерей и т. п.

Специальное листовое стекло или функциональное стекло не только пропускает свет, но и выполняет другие важные функции:

• теплоизоляция зимой и теплозащита летом;

• звукоизоляция и защита от утечки информации;

• защита от механического разрушения;

• создание декоративного эффекта.

Теплоизоляционные стекла отличаются от обычных тем, что благодаря специальному тонкому покрытию на внутренней стороне стекла они снижают долю теряемого через стекло тепла путем отражения инфракрасной части спектра («тепловых лучей») обратно вовнутрь помещения. Светопропускание таких стекол немного ниже, чем у обычных,— 72...79 %.

Теплозащитные (солнцезащитные) стекла выполняют обратную функцию: они отражают часть, падающей на них лучистой энергии, не пропуская ее в помещение. Это достигается двумя методами:

• на поверхность стекла наносится тончайший металлический слой,

работающий, как зеркало;

• на поверхности стекла создается слой из оксидов металла,

задерживающий часть солнечных лучей и придающий стеклу серый,

зеленоватый или бронзовый оттенок.

Защитные стекла — стекла с повышенными прочностными свойствами, не раскалывающиеся на опасные остроугольные осколки. Для получения стекол, более прочных и безопасных по сравнению с обычным листовым стеклом, существует несколько способов.

Закаленное стекло получают специальной термической обработкой стекла. При этом в нем создаются сжимающие напряжения, за счет чего повышается прочность на изгиб в 5...8 раз и прочность на удар в 4...6 раз. При разрушении такое стекло распадается на мелкие (5... 10 мм) кусочки кубической формы, безопасные для человека. В строительстве такие стекла применяют для устройства прозрачных дверей, перегородок и т. п.

Армированное стекло получают путем запрессовки в расплавленную стекломассу во время ее проката чистой сетки из хромированной стальной проволоки. Эта сетка удерживает осколки стекла при его повреждении.

Ламинированное стекло (от лат. lamina — слой) реализует парадоксальную идею упрочнения стекла с помощью эластичной полимерной пленки, запрессованной между слоями стекла. При ударе по стеклу в нем возникает трещина, идущая в глубь стекла. Когда трещина встречает на своем пути полимерную пленку, последняя, деформируясь, поглощает энергию развития трещины и останавливает ее. При этом внутренняя часть стекла остается целой. Такие стекла получили название «триплекс».

Подобный композиционный листовой материал из трех слоев стекла и двух слоев полимерной пленки делает стекло пуленепробиваемым.

Самые современные варианты специальных стекол изготовляют таким образом, что функциональные слои (светоотражающие, теплозащитные и т. п.) наносятся на полимерную пленку, и они оказываются внутри слоистой конструкции, защищающей их от повреждения. Такой метод и более технологичен, так как напыление слоев металла или оксидов проще производить на полимерную пленку, чем на лист стекла.

5. Отделочное стекло

Стекло обладает исключительно высокой стойкостью к действию химически агрессивных сред, высокой твердостью, нулевым водопоглощением (т. е. абсолютной морозостойкостью) и при этом способно окрашиваться в различные цвета красками, не теряющими яркости от атмосферных воздействий. Благодаря гладкости поверхности загрязнения практически не задерживаются на стекле и легко смываются водой. Такая совокупность свойств позволяет получать из стекла высококачественные отделочные материалы.

Листовое декоративное стекло в последние годы широко применяйся при возведении общественных зданий. Особенной популярностью пользуются металлизированные зеркальные стекла различных оттенков (золотистые, голубые, серые и т. п.). Они позволяют решить одновременно и архитектурно-декоративную задачу и обеспечить освещение помещений здания (светопропускание таких стекол 0,15...0,2). Здания, облицованные такими стеклами, благодаря их высокой отражающей способности, зрительно становятся «легче»; при этом пространство как бы расширяется. Этот прием многократно использован при постройке небоскребов в США, Канаде и других странах. В Москве комплекс подобных зданий построен у станции метро «Юго-Западная».

6. Изделия из стекла

Из стекла изготовляют широкую номенклатуру изделий: стеклопакеты, стеклоблоки, стеклопрофилит, кровельные волнистые листы, дверные полотна и др.

Стеклопакеты — наиболее распространенный вид изделий из стекла. Получают стеклопакеты из двух (одинарный стеклопакет) или трех (двойной стеклопакет) листов стекла, герметично соединенных между собой по контуру. Между листами стекла находится прослойка из сухого воздуха или инертного газа. Соединение листов в стеклопакет может осуществляться склейкой, пайкой или сваркой.

Стеклопакеты применяют для остекления окон и других световых проемов. Использование стеклопакетов имеет существенные преимущества перед обычным остеклением листовым стеклом, так как они не запотевают, не замерзают и не нуждаются в протирке внутренних поверхностей. Стеклопакеты имеют низкую теплопроводность, а звукопроницаемость окон со стекопакетом в 2...3 раза ниже обычных.

Стеклянные блоки целесообразно использовать в тех случаях, когда необходимо получить светопрозрачную ограждающую конструкцию с хорошими тепло- и звукоизоляционными харакгеристиками.

Стеклоблоки вырабатываются из горячей стекломассы на пресс-автоматах, формующих половинки блоков, а затем сваривающие их. При остывании в блоках образуется разряжение, обеспечивающее хорошие изоляционные свойства. Внутренняя поверхность блоков имеет рифление, сообщающее блоку светорассеивающие свойства.

Размеры стеклоблоков от 200 х 200 до 400 х 400 мм при толщине до 100 мм. Блоки могут быть бесцветными и цветными. Светопропускание блоков -- 50...60 %. Коэффициент теплопроводности — 0,4...0,45 Вт/(м • К), т.е. почти в 2 раза ниже, чем у кирпича. Кроме обычных блоков изготовляют двухкамерные (с перегородкой, уменьшающей теплопроводность блока почти в 1,5 раза) и светонаправленные (со специальным рифлением, дающим направленный поток света).

Стеклопрофилит — длинноразмерные (до 5 м) профилированные элементы из стекла, изготовляемые методом горизонтального проката. Стеклопрофилит может быть коробчатого и таврового (П-образного) профиля. Его применяют так же, как и стеклянные блоки для устройства светопрозрачных ограждений (наружных стен и перегородок) в промышленных зданиях, выставочных и спортивных залах и т. п. Устанавливают стеклопрофилит в металлических обоймах с пластиковыми или резиновыми уплотнителями.

Стеклянные трубы благодаря высокой химической стойкости, гладкости поверхности и прозрачности с успехом соперничают с металлическими. В ряде областей (например, химическая и пищевая промышленность) их применение предпочтительнее. Пропускная способность стеклянных труб на 5... 10 % выше, чем стальных при одинаковом диаметре. Основной недостаток стеклянных труб — хрупкость и низкая термостойкость (допустимый перепад температур 50° С). Стеклянные трубы используют как в вакуумных, так и в напорных (до 0,7 МПа) сетях.

Стекловолокно получают путем продавливания стекольного расплава через тончайшие фильеры (отверстия в твердых материалах) с последующей вытяжкой и намоткой на бобины. Диаметр волокна — 3...100 мкм, длина — до 20 км (для непрерывного волокна). Более короткие (1...50 см) штапельные волокна получают раздувом расплава паром. Из стекловолокна получают стеклянные ткани и стекловойлок, которые используют как армирующий компонент при производстве стеклопластиков или в качестве основы в рулонных кровельных и гидроизоляционных материалах (например, стеклоизол, стеклорубероид).

Пеностекло — блоки из вспученного в момент нахождения в расплавленном состоянии стекла. По структуре и свойствам пеностекло напоминает вулканическую пемзу и используется как теплоизоляционный материал (подробнее см. § 17.2).

7. Ситаллы и шлакоситаллы

Ситаллы — стеклокристаллические материалы, получаемые путем направленной частичной кристаллизации стекол. Структура ситаллов напоминает микробетон, где наполнителем являются кристаллы, а вяжущим — прослойки стекла. Доля стеклофазы в ситаллах обычно 20...40 %. Кристаллическая фаза состоит из микрокристаллов размером около 1 мкм. Благодаря такому строению ситаллы сохраняют в себе многие положительные свойства стекла, в том числе и его технологичность, но лишены его недостатков: хрупкости, низкой термостойкости. Сырье для производства ситаллов такое же, как и для стекла, но в расплав вводятся вещества-модификаторы, обеспечивающие направленную кристаллизацию.

Для строительных целей весьма перспективны шлакоситалаы, получаемые на основе металлургических шлаков и модификаторов — CaF2, TiO2 и др. У шлакоситаллов очень высокая прочность (Rсж = 300...600 МПа; Rиж = 90...120 МПа), износостойкость и химическая стойкость. По долговечности шлакоситалл может конкурировать с природными каменными материалами (гранит, габбро и т. п.).

Применение шлакоситаллов перспективно для химической промышленно-сти (трубы, плитки, детали насосов), в гидротехнике (для облицовки турбинных камер, водосливов), в дорожном строительстве и т. п.

8. Каменное и шлаковое литье

Из горных пород и металлургических ишаков методом литья из расплавов можно получить разнообразные строительные материалы с высокими эксплуатационными свойствами.

Сырье. В качестве исходного сырья для производства каменного литья применяют магматические (базальт, диабаз) и осадочные (доломит, известняк, песок) горные породы. Первые дают темноокрашенные изделия, а вторые — светлоокрашенные. Для получения каменного литья возможно использование металлургических шлаков; особенно эффективно их использование в огненно-жидком состоянии.

Производство литых каменных изделий начинается с подготовки и плавления (1400... 1500° С) сырьевой шихты. Полученный расплав выливается в формы и подвергается медленному охлаждению для прохождения кристаллизации. С целью ускорения кристаллизации вводят добавки-минерализаторы, служащие центрами кристаллизации. Последняя операция — отжиг — второй этап медленного охлаждения, проводимый для снятия внутренних напряжений.

Свойства каменного литья. Изделия из каменного литья по своей однородности и техническим свойствам превосходят природные каменные материалы.

Плотность каменного литья 2700...3000 кг/м3; пористость — не более 1...2%; поры замкнутые, что обеспечивает нулевое водопоглощение и высочайшую морозостойкость.

Прочность при сжатии составляет 200...250 МПа, при изгибе — 30...50 МПа, твердость 6...7 (по шкале Мооса), износостойкость очень высокая. Для каменного литья характерна очень высокая и универсальная химическая стойкость.

Применение. Литые каменные изделия используют для облицовки конструкций, подвергающихся серьезным агрессивным воздействиям: многократному замораживанию-оттаиванию, интенсивному истиранию, воздействию химически агрессивных веществ и т. п. Поэтому основными видами литых каменных изделий являются облицовочные плитки, брусчатка для мощения дорог, мелющие тела и облицовка для мельниц, труб. Диэлектрические свойства каменного литья используются в производстве электроизоляционных изделий.

Каменное литье светлых тонов применяют как материал для облицовки уникальных зданий и сооружений, а также для изготовления архитектурных деталей и скульптуры.

Лекция 8. НЕОРГАНИЧЕСКИЕ ВЯЖУЩИЕ МАТЕРИАЛЫ

1. Общие сведения

Вяжущими веществами называют материалы, способные в определенных условиях (при смешивании с водой, нагревании и др.) образовывать пластично-вязкое тесто, которое самопроизвольно или под действием определенных факторов со временем затвердевает.

Переходя из пластично-вязкого состояния в камневидное, вяжущие вещества могут скреплять между собой камни (например, кирпич) или зерна песка, гравия и щебня. Это свойство вяжущих используется для получения бетонов, строительных растворов различного назначения, силикатного кирпича, асбестоцемента и других безобжиговых искусственных каменных материалов.

Начало использования человеком вяжущих открыло новую эпоху в строительстве: вместо обтесывания камней строители с помощью вяжущих и камней произвольной формы могли делать любые конструкции, не беспокоясь о плотном прилегании одного камня к другому.

Современные вяжущие вещества в зависимости от состава делят на:

• неорганические (известь, цемент, гипсовые вяжущие и др.), которые для перевода в рабочее состояние затворяют водой (реже водными растворами солей);

• органические (битумы, дегти, синтетические полимеры и олигомеры), которые переводят в рабочее состояние нагревом либо с помощью органических растворителей, либо сами они представляют собой вязкопластичные жидкости.

В строительстве в основном используют неорганические (минеральные) вяжущие вещества.

Далее для краткости неорганические вяжущие вещества будут называться просто вяжущим. Органические вяжущие так и будем называть (см. лекцию 9).

Подавляющее число неорганических вяжущих способно твердеть самопроизвольно, без создания каких-либо условий. Однако находят применение и вяжущие, которые твердеют при определенных условия и при введении специальных добавок, например вяжущие автоклавного твердения, способные твердеть только в среде насыщенного водяного пара при температуре 150...200°С и при повышенном давлении (в автоклаве). К последним относятся известково-кремнеземистые, известково-зольные, известково-шлаковые и другие вяжущие.

Главным качественным показателем вяжущих является отношение к воздействию воды. По этому признаку их делят на воздушные и гидравлические.

Воздушные вяжущие способны затвердевать и длительно сохранять прочность только на воздухе. По химическому составу можно выделить четыре группы воздушных вяжущих:

1 — известковые, состоящие, в основном, из гидрооксида кальция Са(ОН)2;

2 — гипсовые, состоящие из сульфата кальция (CaSO4 • 0,5Н2О или CaSO4);

3 — магнезиальные, главным компонентом которых служит MgO;

4 — жидкое стекло — раствор силиката натрия или калия. Последнее из-за способности сохранять прочность в кислых средах называют кислотоупорным вяжущим.

Гидравлические вяжущие способны твердеть и длительное время сохранять прочность не только на воздухе, но и в воде. Причем, находясь в воде, они могут повышать свою прочность. По химическому составу гидравлические вяжущие представляют собой сложные системы, состоящие в основном из соединений четырех оксидов: СаО - SiO2 - А12О3 - Fe2O3. Эти соединения образуют основные типы гидравлических вяжущих (приводятся в исторической последовательности):

1) гидравлическая известь и романцемент;

2) силикатные цементы, состоящие преимущественно из силикатов кальция (портландцемент и его разновидности);

3) алюминатные цементы, состоящие в основном из алюминатов кальция (глиноземистый цемент и его разновидности);

4) вяжущие эттрингитового типа, основными компонентами которых являются алюминаты кальция и сульфат кальция (расширяющиеся и безусадочные цементы).

Главнейшие показатели качества вяжущих как воздушных, так и гидравлических,— прочность и скорость твердения.

Прочность вяжущих изменяется во времени, поэтому ее оценивают по прочности (обычно на сжатие и изгиб) стандартных образцов, твердевших определенное время в условиях, установленных стандартом. По этим показателям устанавливают марку вяжущего. Например, марка гипсовых вяжущих определяется по прочности образцов из гипсового теста спустя 2 ч после их изготовления, а портландцемента - по прочности образцов из цементно-песчаного раствора — через 28 суток твердения во влажных условиях при температуре (20 ± 2)° С.

Скорость твердения — другая не менее важная характеристика вяжущих. Очень высокой скоростью твердения обладают гипсовые вяжущие: они полностью затвердевают за несколько часов; очень медленно твердеет воздушная известь: процесс ее твердения длится сотни лет.

В процессе твердения строители различают две стадии: схватывание и набор прочности (собственно твердение). Такое членение процесса имеет весьма условный характер, но оно удобно для практических целей.

Схватывание — потеря тестом вяжущего пластично-вязких свойств и формирование структуры с молекулярными, ван-дер-ваальсовыми связями. Момент, когда появляются признаки загустевания теста, т. е. оно начинает терять пластичность, говорит о начале схватывания. Момент, когда тесто превращается в твердое тело, окончательно теряя пластичность, но не приобретая еще практически значимой прочности, называют концом схватывания. Сроки схватывания гипса 4...30 мин, портландцемента — несколько часов. Схватывание — явление, характерное для вяжущих, твердеющих по физико-химическому механизму (гипс, цементы). У простейших вяжущих (глина, известь), твердеющих в результате испарения воды, этап схватывания растягивается на очень длительный период времени, поэтому принято считать, что он просто отсутствует.

Сроки схватывания необходимо знать, так как все работы со смесями на основе вяжущих должны заканчиваться до начала их схватывания, пока они не потеряли пластичности. Повторное перемешивание после схватывания, особенно с добавлением воды, может привести к существенному снижению прочности материала на этом вяжущем.

2. Глина

Глина — осадочная горная порода, основные свойства которой определяются свойствами мельчайших частиц размером менее 5 мкм, которые принято называть глинами. В минералогической энциклопедии глинами называют частицы размером менее 2мкм. Глинистые частицы обычно имеют пластинчатое строение и хорошо смачиваются водой (гидрофильны). Благодаря большой общей поверхности частиц глина способна поглощать и удерживать большое количество воды (до 20...30 % по массе). При этом она разбухает и переходит в вязкопластичное состояние.

При высыхании глиняное тесто уменьшается в объеме (10...20 %): частицы глины, сближаясь, начинают прочно удерживаться друг около друга силами поверхностного натяжения тончайших пленок воды, остающейся между ними. Происходит затвердевание глины. Прочность высохшей глины достаточно велика (до 10 МПа).

Глиняное тесто при высыхании из-за сближения частиц дает значительную усадку. Чтобы уменьшить усадку и предотвратить растрескивание, в глиняное тесто добавляют более крупнозернистые материалы (песок, опилки).

При повторном увлажнении глина вновь размягчается, поэтому затвердевший глиняный материал необходимо предохранять от воздействия воды.

Глину в качестве вяжущего применяют как местный материал в сельском строительстве для штукатурных и кладочных растворов. Особенно широко применяют глины для кладки печей. Из глины с добавлением соломы получают также материал для кладки стен — саман.

Благодаря высокой пластичности и способности удерживать воду на поверхности своих тонкодисперсных частиц глину используют в качестве пластифицирующей добавки к цементу в строительных растворах.

3. Гипсовые вяжущие вещества

Гипсовые вяжущие — группа воздушных вяжущих веществ, в затвердевшем состоянии состоящих из двуводного сульфата кальция (CaSO4 • 2Н2О), включает в себя собственно гипсовые вяжущие (далее для краткости — гипс) и ангидритовые вяжущие (ангидритовый цемент и эстрихгипс).

Гипс (в строительной практике иногда используют устаревший термин алебастр от гр. alebastros — белый) — быстротвердеющее воздушное вяжущее, состоящее из полуводного сульфата кальция CaSO4 • 0,5Н2О, получаемого низкотемпературной (< 200° С) обработкой гипсового сырья.

Сырьем для гипса служит в основном природный гипсовый камень, состоящий из двуводного сульфата кальция (CaSO4•2Н2О) и различных механических примесей (глины и др.). В качестве сырья могут использоваться также гипсосодержащие промышленные отходы, например, фосфогипс, а также сульфат кальция, образующийся при химической очистке дымовых газов от оксидов серы с помощью известняка. Все это указывает на то, что проблем с сырьем для гипсовых вяжущих нет.

Получение гипса включает две операции:

- термообработку гипсового камня на воздухе при 150... 160°С; при этом он теряет часть химически связанной воды, превращаясь в полуводный сульфат кальция ?-модификации:

CaSO4 • 2Н2О ? CaSO4 • 0,5Н2О + 1,5Н2О

- тонкий размол продукта, который можно производить как до, так и после термообработки; гипс - мягкий минерал (твердость по шкале Мооса - 2), поэтому размалывается он очень легко.

Таким способом производится основное количество гипса; обычно для этого используют гипсоварочные котлы. Гипс ?-модификации далее для краткости будем называть просто «гипс».

Доступность сырья, простота технологии и низкая энергоемкость производства (в 4...5 раз меньше, чем для получения портландцемента) делают гипс дешевым и привлекательным вяжущим.

Химизм твердения гипса заключается в переходе полуводного сульфата кальция при затворении его водой в двуводный:

CaSO4 • 0,5Н2О + l,5H2O ? CaSO4 • 2Н2О

Внешне это выражается в превращении пластичного теста в твердую камнеподобную массу.

Причина такого поведения гипса заключается в том, что полуводный гипс растворяется в воде почти в 4 раза лучше, чем двуводный (растворимость соответственно 8 и 2 г/л в пересчете на CaSO4). При смешивании с водой полуводный гипс растворяется до образования насыщенного раствора и тут же гидратируется, образуя двугидрат, по отношению к которому раствор оказывается пересыщенным. Кристаллы двуводного гипса выпадают в осадок, а полуводный вновь начинает растворяться и т. д. В дальнейшем процесс может идти по пути непосредственной гидратации гипса в твердой фазе.

Конечной стадией твердения, заканчивающегося через 1...2 ч, является образование кристаллического сростка из достаточно крупных кристаллов двуводного гипса. Часть объема этого сростка занимает вода (точнее, насыщенный раствор CaSO4 • 2Н2О в воде), не вступившая во взаимодействие с гипсом. Если высушить затвердевший гипс, то прочность его заметно (в 1,5...2 раза) повысится за счет дополнительной кристаллизации гипса из указанного выше раствора по местам контактов уже сформированных кристаллов. При повторном увлажнении процесс протекает в обратном порядке, и гипс теряет часть прочности.

Причина наличия свободной воды в затвердевшем гипсе объясняется тем, что для гидратации гипса нужно около 20% воды от его массы, а для образования пластичного гипсового теста — 50...60% воды. После затвердевания такого теста в нем останется 30...40 % свободной воды, что составляет около половины объема материала. Этот объем воды образует поры, временно занятые водой, а пористость материала, как известно, определяет многие его свойства (плотность, прочность, теплопроводность и др.).

Разница между количеством воды, необходимым для твердения вяжущего и для получения из него удобоформуемого теста,— основная проблема технологии материалов на основе минеральных вяжущих.

Для гипса проблема снижения водопотребности и, соответственно, снижения пористости и повышения прочности была решена путем получения гипса термообработкой не на воздухе, а в среде насыщенного пара (в автоклаве при давлении 0,3...0,4 МПа) или в растворах солей (СаС12 • MgCl2 и др.). В этих условиях образуется другая кристаллическая модификация полуводного гипса — ?-гипс, имеющая водопотребность 35...40 %.

Гипс ?-модификации называют высокопрочным гипсом, так как благодаря пониженной водопотребности он образует при твердении менее пористый и более прочный камень, чем обычный гипс ?-модификации. Из-за трудностей производства высокопрочный гипс не нашел широкого применения в строительстве.

Технические свойства гипса. Истинная плотность полуводного гипса — 2,65...2,75 г/см3 (двуводного — 2,32 г/см5); насыпная плотность полуводного гипса — 800... 1100 кг/м3.

По срокам схватывания, определяемым на приборе Вика гипс делят на три группы (А, Б, В):

Вид гипса Начало схватывания Конец схватывания Быстротвердеющий (А) Не ранее 2 мин Не позднее 15 мин Нормальнотвердеющий (Б) Не ранее 6 мин Не позднее 30 мин Медленнотвердеющий (В) Не ранее 20 мин Не нормируется

Замедляют схватывание гипса добавкой столярного клея, сульфит-носпиртовой барды (ССБ), технических лигносульфонатов (ЛСТ), кератинового замедлителя, а также борной кислоты, буры и полимерных дисперсий (например, ПВА).

Марку гипса определяют испытанием на сжатие и изгиб стандартных образцов-балочек 4 х 4 х 16 см спустя 2 ч после их формования. За это время гидратация и кристаллизация гипса заканчивается.

Установлено 12 марок гипса по прочности от Г-2 до Г-25 (цифра показывает нижний предел прочности при сжатии данной марки гипса в МПа):

В строительстве используется в основном гипс марок от Г-4 до Г-7.

По тонкости помола, определяемой максимальным остатком пробы гипса при просеивании на сите с отверстиями 0,2 мм, гипсовые вяжущие делят на три группы: грубый, средний, тонкий.

Плотность затвердевшего гипсового камня низкая (1200... 1500 кг/м3) из-за значительной пористости (60...30 % соответственно).

Гипсовое вяжущее — одно из немногих вяжущих, расширяющихся при твердении: увеличение в объеме достигает 0,2 %. Эта особенность гипсовых вяжущих позволяет применять их без заполнителей, не боясь растрескивания от усадки.

При увлажнении затвердевший гипс не только существенно (в 2...3 раза) снижает прочность, но и проявляет нежелательное свойство — ползучесть — медленное необратимое изменение размеров и формы под нагрузкой. Характер водной среды во влажном гипсе — нейтральный (рН = 6,5...7,5), и она содержит ионы Са+2 и SO-24, поэтому стальная арматура в гипсе корродирует. Увлажнению гипса способствует его гигроскопичность — способность поглощать влагу из воздуха.

Гипс хорошо сцепляется с древесиной и поэтому его целесообразно армировать деревянными рейками, картоном или целлюлозными волокнами и наполнять древесными стружками и опилками.

Гипсовые материалы не только являются негорючими материалами, но в силу своей пористости замедляют передачу теплоты, а при действии высоких температур в результате термической диссоциации выделяют воду, тем самым тормозя распространение огня.

В сухих условиях эксплуатации или при предохранении от действия воды (гидрофобизирующие покрытия, пропитки и т. п.) гипс очень перспективное с технической и экологической точек зрения вяжущее.

Области применения. Главнейшая область применения гипса — устройство перегородок. Они могут быть заводского изготовления в виде панелей «на комнату», из гипсовых камней или из гипсокартонных листов. Последние также широко применяют для отделки стен и потолков. Гипсоволокнистые материалы используют как выравнивающий слой под чистые полы. Из гипса делают акустические плиты. В различных вариантах его применяют для огнезащитных покрытий металлических конструкций. Небольшое по объему, но важное направление использования гипса: декоративные архитектурные детали (лепнина) и скульптура.

Гипс используют для изготовления форм (например, для керамики)

- формовочный гипс и в медицине для фиксации при переломах -

медицинский гипс. Два последних вида гипса отличаются от строительного несколько повышенными требованиями к тонкости помола и

химическому составу.

Местные вяжущие материалы из гипсосодержащих пород. В районах Средней Азии и Закавказья применяют местные вяжущие — ганч и гажу. Их получают из пород, содержащих гипс (20...60 %) и глину (80...40 %). Ганч и гажа по свойствам напоминают обычный гипс, отличаясь от него более медленным схватыванием. Эти вяжущие используют для штукатурных и художественных работ.

Ангидритовое вяжущее и высокообжиговый гипс — медленносхва-тывающиеся и медленнотвердеющие вяжущие, состоящие из безводного сульфата кальция CaSO4 и активизаторов твердения.

Безводный сульфат кальция существует в природе в виде минерала -ангидрита, однако даже в тонкоразмолотом состоянии он не обнаруживает вяжущих свойств.

Высокообжиговый гипс (эстрих-гипс) получают обжигом природного гипсового камня CaSO4 • 2Н2О до высоких температур (800...950° С). При этом происходит его частичная диссоциация с образованием СаО. Последний служит активизатором твердения ангидрита. Окончательным продуктом твердения такого вяжущего является двуводный гипс, определяющий эксплуатационные свойства материала.

Технологические свойства эстрих-гипса существенно отличаются от свойств обычного гипса. Сроки схватывания эстрих-гипса: начало не ранее 2 ч, конец - не нормируется. Благодаря пониженной водопотребности (у эстрих-гипса она составляет 30...35 % против 50...60 % у обычного гипса) эстрих-гипс после затвердевания образует более плотный и прочный материал. Прочность образцов-кубов из раствора жесткой консистенции состава вяжущее: песок =1:3 через 28 суток твердения во влажных условиях — 10...20 МПа. По этому показателю устанавливают марку эстрих-гипса: 100; 150 или 200 (кгс/см2).

Эстрих-гипс применяли в конце XIX — начале XX вв. для кладочных и штукатурных растворов (в том числе и для получения искусственного мрамора), устройства бесшовных полов, оснований под чистые полы и т. п. В настоящее время это вяжущее применяют ограниченно. Весьма вероятно появление интереса к этому вяжущему в недалеком будущем.

4. Магнезиальные вяжущие

Магнезиальные вяжущие вещества (каустический магнезит MgO и каустический доломит MgO + СаСО3) — тонкодисперсные порошки, активной частью которых является оксид магния.

Получают магнезиальные вяжущие умеренным (до 700...800° С) обжигом магнезита (реже доломита). При этом карбонат магния диссоциирует с образованием оксида магния MgCO3 ? MgO + СО2, а карбонат кальция СаСО3 (в доломите) остается без изменения и является балластной частью вяжущего. Обожженный продукт размалывают.

При затворении водой оксид магния гидратируется очень медленно, проявляя слабые вяжущие свойства. Магнезиальные вяжущие принято затворять раствором хлорида или сульфата магния. В этом случае гидратация протекает значительно быстрее с образованием гидрата оксихлорида магния (3MgO • MgCl2 • 6Н2О), уплотняющего образующийся материал.

Сроки схватывания каустического магнезита зависят от температуры обжига и тонкости помола и обычно находятся в пределах: начало - не ранее 20 мин; конец - не позднее 6 ч.

Твердение начинается интенсивно, и через сутки вяжущее достигает прочности 10... 15 МПа; через 28 суток воздушного твердения прочность составляет 30...50 МПа. В жестких смесях прочность может достигать 100 МПа.

Магнезиальные вяжущие в XIX — начале XX в. применялись для устройства бесшовных монолитных, так называемых ксилолитовых полов. Ксилолит (от гр. xelon — древесина) — бетон на магнезиальном вяжущем с наполнителем из древесных опилок. Серьезных перспектив у магнезиальных вяжущих из-за дефицитности сырья (магнезиты необходимы для получения огнеупоров) нет, но в последнее время они вновь начали применяться в отечественном строительстве.

5. Растворимое стекло и кислотоупорный цемент

Растворимое стекло — силикаты натрия (Na2O•mSiO2) или калия (К2О•mSiO2), где m — модуль стекла, находящийся в пределах для натриевого стекла 2,0...3,5, а для калиевого 3,5...4,5. Растворимое стекло получают сплавлением смеси кварцевого песка соответственно с содой Na2CO3 (или сульфатом натрия Na2SO4) и поташем К2СО3 в стекловаренных печах при 1300...1400°С. Образовавшийся расплав быстро охлаждают. При этом он распадается на полупрозрачные желто-зеленые куски, называемые силикат-глыбой.

В строительстве обычно используют раствор силикат-глыбы в воде - жидкое стекло (в быту такой раствор называют силикатный клей).

Растворение производится в автоклаве насыщенным паром. Плотность раствора 1,5...1,3 г/см3, что соответствует концентрации раствора 70...50 %.

При растворении в воде силикаты натрия и калия гидролизуются с образованием коллоидного раствора кремневой кислоты Si(OH)4 и соответствующих щелочных гидроксидов. В этих условиях (рН = 12...13) раствор кремневой кислоты относительно стабилен. Жидкое стекло имеет повышенную вязкость из-за того, что кремнекислота в нем находится в полимеризованном виде. При обезвоживании (испарении или отсасывании воды) или при нейтрализации щелочей (например, углекислым газом воздуха) раствор теряет стабильность и переходит в гель, уплотняющийся со временем и приобретающий значительную прочность. Так, растворимое стекло проявляет вяжущие свойства. В обычных условиях этот процесс может идти очень долго, поэтому используют добавки — ускорители твердения.

Жидкое стекло применяют для изготовления кислотоупорных и жаростойких замазок и бетонов, а также как связующее в силикатных красках (только калиевое стекло).

Кислотоупорный цемент изготовляют из тонко измельченной смеси кислотоупорного наполнителя (кварца, диабаза, андезита и т. п.) и ускорителя твердения — кремнефтористого натрия Na2SiF6. Название «цемент» для такого порошка имеет условный характер, так как сам он вяжущими свойствами не обладает и при смешивании с водой не твердеет. Вяжущим веществом в таких цементах является жидкое стекло, которым этот «цемент» и затворяют.

Ориентировочное количество Na2SiF6 от массы растворимого стекла (т. е. сухого вещества в составе жидкого стекла) в кислотоупорных растворах и бетонах составляет 10...15 %.

Сроки схватывания кислотоупорного цемента: начало — не ранее 20 мин., конец — не позднее 8 ч. У этого цемента нормируется предел прочности при растяжении после 28 суток твердения — не менее 2,0 МПа. Прочность при сжатии бетонов на кислотоупорном цементе составляет 20...60 МПа.

Основным достоинством и отличием кислотоупорного цемента от других неорганических вяжущих является способность работать в условиях действия большинства кислот (за исключением плавиковой и фосфорной).

Кислотостойкость — сохранение массы при испытании в кислоте — не менее 93 %.

Однако при длительном воздействии воды, пара и растворов щелочей бетоны и растворы на жидком стекле теряют прочность.

6. Воздушная известь

Известь известна человечеству не одно тысячелетие и все это время активно используется им в строительстве и многих других отраслях. Это объясняется доступностью сырья, простотой технологии и достаточно хорошими свойствами извести.

Сырьем для получения извести служат широко распространенные осадочные горные породы: известняки, мел, доломиты, состоящие преимущественно из карбоната кальция (СаСО3). Если куски таких пород прокалить на огне, то карбонат кальция перейдет в оксид кальция:

СаСО3 ? СаО + СО2?

После прокаливания куски, теряя с углекислым газом 44 % своей массы, становятся легкими и пористыми. При смачивании водой они бурно реагируют с ней, превращаясь в тонкий порошок, а при избытке воды в пластичное тесто. Этот процесс, сопровождающийся сильным выделением теплоты и разогревом воды вплоть до кипения, называют гашением извести. Образующееся при избытке взятой воды пластичное тесто используют в качестве вяжущего. При испарении воды тесто загустевает и переходит в камневидное состояние. Недостаток извести — медленное твердение: процесс набора прочности твердеющей известью растягивается на годы и десятилетия. В реальные сроки строительства прочность затвердевшей извести, как правило, не превышает 0,5...2 МПа.

Производство. Сырье — карбонатные породы (известняки, мел, доломиты), содержащие не более 6...8 % глинистых примесей, обжигают в шахтных или вращающихся печах при температуре 1000... 1200° С. В процессе обжига СаСО3 и MgCO3, содержащиеся в исходной породе, разлагаются на оксиды кальция СаО и магния MgO и углекислый газ. Неравномерность обжига может привести к образованию в извести недожога и пережога.

Недожог (неразложившийся СаСО3), получающийся при слишком низкой температуре обжига, снижает качество извести, так как не гасится и не обладает вяжущими свойствами.

Пережог образуется при слишком высокой температуре обжига в результате сплавления СаО с примесями кремнезема и глинозема. Зерна пережога медленно гасятся и могут вызвать растрескивание и разрушение уже затвердевшего материала.

Куски обожженной извести — комовая известь — обычно подвергают гашению водой:

СаО + Н2О ? Са(ОН)2 + 1160 кДж/кг

Выделяющаяся при гашении теплота резко повышает температуру извести и воды, которая может даже закипеть (поэтому негашеную известь называют кипелкой).

При гашении куски комовой извести увеличиваются в объеме и распадаются на мельчайшие (до 1 мкм) частицы.

В зависимости от количества взятой для гашения воды получают: гидратную известь - пушонку (35…40 % воды от массы извести, т. е. в количестве, необходимом для протекания реакции гидратации — процесса гашения); известковое тесто (воды в 3...4 раза больше, чем извести), известковое молоко (количество воды превышает теоретически необходимое в 8... 10 раз).

Виды воздушной извести. По содержанию оксидов кальция и магния воздушная известь бывает:

• кальциевая — MgO не более 5 %;

• магнезиальная — MgO > 5...20 %;

• доломитовая — MgO > 20...40 %.

По виду поставляемого на строительство продукта воздушную известь подразделяют на негашеную комовую (кипелку), негашеную порошкообразную (молотую кипелку) и гидратную (гашеную, или пушонку).

Негашеная комовая известь предстаатяет собой мелкопористые куски размером 5...10см, получаемые обжигом известняка. В зависимости от содержания, активных СаО + MgO и количества негасящихся зерен комовую известь разделяют на три сорта.

По скорости гашения комовая известь бывает:

Вид извести Время достижения максимальной температуры, мин Быстрогасящаяся

Среднегасящаяся

Медленногасящаяся <8

8...25

>25

Негашеную порошкообразную известь получают помолом комовой в шаровых мельницах в тонкий порошок. Часто в известь во время помола вводят активные добавки (гранулированные доменные шлаки, золы ТЭС и т. п.) в количестве 10...20 % от массы извести. Порошкообразная известь, как и комовая, делится на три сорта.

Преимущество порошкообразной извести перед комовой состоит в том, что при затворении водой она ведет себя подобно гипсовым вяжущим: сначала образует пластичное тесто, а через 20...40 мин схватывается. Это объясняется тем, что вода затворения, образующая тесто, частично расходуется на гашение извести.

При использовании порошкообразной извести воды берут 100...150 % от массы извести в зависимости от качества извести и количества активных добавок в ней. Определяют количество воды опытным путем.

Гидратная известь (пушонка) — тончайший белый порошок, получаемый гашением извести, обычно в заводских условиях, небольшим количеством воды (несколько выше теоретически необходимого). При гашении в пушонку известь увеличивается в объеме в 2...2,5 раза. Насыпная плотность пушонки — 400...450 кг/м3; влажность — не более 5 %.

Гашение извести можно производить как на строительстве объекта, так и централизованно. В последнем случае гашение совмещается с мокрым помолом непогасившихся частиц, что увеличивает выход извести и улучшает ее качество.

На строительстве известь гасят в гасильных ящиках (творилах). В ящик загружают комовую известь не более чем на 1/3 его высоты (толщина слоя обычно около 100 мм), поскольку при гашении известь увеличивается в объеме в 2,5...3,5 раза. Быстрогасящуюся известь заливают сразу большим количеством воды, чтобы не допустить перегрева и кипения воды, медленногасящуюся — небольшими порциями, следя за тем, чтобы известь не охладилась. Из 1 кг извести в зависимости ох ее качества получается 2...2,5 л известкового теста. Этот показатель называют «выход теста».

Воздушная известь — единственное вяжущее, которое превращается в тонкий порошок не только размолом, но и путем гашения водой.

Колоссальная удельная поверхность частиц Са(ОН)2 и их гидрофильность обусловливает большую водоудерживающую способность и пластичность известкового теста. После отстаивания известковое тесто содержит около 50% твердых частиц и 50% воды. Каждая частица окружена тонким слоем адсорбированной воды, играющей роль своеобразной смазки, что обеспечивает высокую пластичность известкового теста и смесей с использованием извести.

По окончании гашения жидкое известковое тесто через сетку сливают в известехранилище, где его выдерживают до тех пор, пока полностью не завершится процесс гашения (обычно не менее двух недель). Известковое тесто с размером непогасившихся зерен менее 0,6 мм можно применять сразу. Крупные непогасившиеся зерна опасны тем, что среди них могут быть пережженные зерна (пережог).

Содержание воды в известковом тесте не нормируется. Обычно в хорошо выдержанном тесте соотношение воды и извести около 1:1.

Твердение. Известковое тесто состоит из насыщенного водного раствора Са(ОН)2 и мельчайших нерастворившихся частиц извести; По мере испарения из него воды образуется пересыщенный раствор Са(ОН)2, из которого выпадают кристаллы, увеличивающие содержание твердой фазы. При этом происходит усадка твердеющей системы, которая в определенных условиях (например, при твердении известковой смеси на жестком основании — штукатурный слой) может вызвать растрескивание материала. Поэтому известь всегда применяют с заполнителями (например, известково-песчаные растворы) или в смеси с другими вяжущими для придания материалу пластичности.

Известковое тесто, защищенное от высыхания, неограниченно долго сохраняет пластичность, т. е. у такой извести «отсутствует» процесс схватывания. Затвердевшее известковое тесто при увлажнении вновь переходит в пластичное состояние (известь — неводостойкий материал).

Однако при длительном твердении (десятилетия) известь приобретает довольно высокую прочность и относительную водостойкость (например, в кладке старых зданий). Это объясняется тем, что на воздухе известь реагирует с углекислым газом, образуя нерастворимый в воде и довольно прочный карбонат кальция, т. е. как бы обратно переходит в известняк:

Са(ОН)2 + СО2 ? СаСО3 + Н2О

Процесс этот очень длительный, и полной карбонизации извести практически не происходит.

Существует мнение, что при длительном контакте извести с кварцевым песком в присутствии влаги между этими компонентами происходит взаимодействие с образованием контактного слоя из гидросиликатов. Это так же повышает прочность и водостойкость бетонов и кирпичной кладки на извести, имеющих возраст более 200...300 лет.

Применение, транспортирование, хранение. Воздушную известь применяют для приготовления кладочных и штукатурных растворов как самостоятельное вяжущее, так и в смеси с цементом; при производстве силикатного кирпича и силикатобетонных изделий; для получения смешанных вяжущих (известково-шлаковых, известково-зольных и др.) и для красок.

Негашеную известь, особенно порошкообразную, при транспортировании и хранении предохраняют от увлажнения. Порошкообразная известь - кипелка гасится даже влагой, содержащейся в воздухе. Максимальный срок хранения молотой извести в бумажных мешках 25 сут, в герметичной таре (металлические барабаны) — не ограничен.

Комовую известь транспортируют навалом в закрытых вагонах и автомашинах, порошкообразную — в бумажных мешках, а также в специальных автоцистернах. В таких же цистернах перевозят пушонку и известковое тесто.

Хранят комовую известь в сараях с деревянным полом, поднятым над землей на 30 см. Недопустимо попадание на известь воды, так как это может вызвать ее разогрев и пожар. На складах извести тушение пожара водой запрещается.

7. Гидравлические известьсодержащие вяжущие

Низкая водостойкость извести всегда побуждала людей искать пути ликвидации этого недостатка. Еще в Древнем Риме был найден способ получения водостойкого вяжущего на основе извести. Помогло римлянам в этом наличие вулкана Везувия. Они обнаружили, что при добавлении вулканического пепла к извести образующаяся смесь после твердения на воздухе в течение 7...14 дн. далее могла твердеть в воде (более того, именно влажные условия были обязательны для набора прочности!). Это было первое гидравлическое вяжущее. Добавки из вулканических пород (пепла, туфа и т. п.) впоследствии получили название гидравлические или пуццолановые (по названию местечка у подножия Везувия, где они добывались). Римские постройки (мосты, акведуки, бани-термы и т. п.) на таких смешанных вяжущих сохранились до сих пор.

В Древней Руси проблема придания извести водостойкости была решена несколько иным путем. Там в роли гидравлической добавки использовали молотый бой кирпича; такую смесь на Руси называли цемянкой.

Механизм твердения этих вяжущих заключается в образовании из смеси извести, активных кремнезема и глинозема (пепла, молотого кирпича и т. п.) и воды водонерастворимых гидросиликатов и гидроалюминатов:

nСа(ОН)2 + SiO2 + mH2O ? nСаО • SiO2 • mH2O

Другой путь получения водостойких вяжущих на основе извести также был найден очень давно. Он базировался на обжиге известняков, имеющих примесь глины от 6 до 20%. В этом случае в обожженном продукте помимо СаО появлялись низкоосновные силикаты и алюминаты (например, 2СаО • SiO2), способные к твердению в воде. Естественно, механизм твердения этих вяжущих был расшифрован только в XX в. Все эти вяжущие в несколько измененном виде применяют до сих пор.

Современные известьсодержащие вяжущие гидравлического твердения — группа низкомарочных (малопрочных) так называемых местных вяжущих. В эту группу входят смешанные вяжущие (известково-пуццолановые и известково-шлаковые), а также гидравлическая известь.

Смешанные вяжущие получают совместным измельчением негашеной извести (10...30%), гидравлической добавки (85...70%) и гипса (до 5%). В качестве добавки используют горные породы, содержащие активный кремнезем: вулканический пепел, пемзу, туф, диатомит, трепел и др. Такие вяжущие называют известково-пуццолановыми. Если в качестве добавки взят доменный гранулированный шлак, такие вяжущие называют известково-шлаковыми.

Известьсодержащие гидравлические вяжущие на начальной стадии (около 7 дн) должны твердеть в сухих условиях, а затем во влажных. По пределу прочности при сжатии стандартных образцов через 28 суток твердения известьсодержащие вяжущие делятся на марки 50; 100; 150 и 200 (кг/см2).

Известьсодержащие гидравлические вяжущие применяют для приготовления растворов для кладки подземных частей зданий и бетонов. Срок хранения таких вяжущих из-за наличия в них негашеной извести не должен превышать 30 суток, причем во время хранения их тщательно предохраняют от увлажнения.

Строительная гидравлическая известь — продукт умеренного обжига при температуре 900... 1100° С мергелистых известняков (содержание глины 8..20 %). В состав гидравлической извести входят свободные оксиды кальция и магния (50...65 %) и низкоосновные силикаты и алюминаты кальция, которые и придают извести гидравлические свойства.

Гидравлическая известь, смоченная водой, полностью гасится, образуя пластичное тесто. В отличие от воздушной она быстрее твердеет, приобретая со временем водостойкость. Однако первые 1...2 недели гидравлическая известь должна твердеть в воздушно-влажных условиях, и только после этого ее можно помещать в воду.

Предел прочности при сжатии затвердевшей гидравлической извести 2...5 МПа. Применяют ее для низкомарочных растворов и бетонов, используемых в том числе и во влажных условиях.

8. Портландцемент

Гидравлическая известь обладает рядом недостатков. Главные из них: необходимость твердения на воздухе первые 7... 14 сут, низкие прочность, морозо- и воздухостойкость. Поэтому велись поиски более совершенного вяжущего вещества. Практически одновременно (1824— 1825) независимо друг от друга Егор Челиев в России и Джозеф Аспдин в Англии путем высокотемпературного обжига до спекания смеси известняков и глины получили вяжущее, обладающее большей водостойкостью и прочностью. Производство нового вяжущего, названного впоследствии портландцементом, совершенствовалось и быстро расширялось. Уже в начале XX в. портландцемент стал одним из основных строительных материалов.

Портландцемент — гидравлическое вяжущее, получаемое тонким измельчением портландцементного клинкера и небольшого количества гипса (1,5...3 %). Клинкер получают обжигом до спекания сырьевой смеси, обеспечивающей в портландцементе преобладание силикатов кальция. К клинкеру для замедления схватывания цемента добавляют гипс. Для улучшения некоторых свойств и снижения стоимости портландцемента допускается введение минеральных добавок.

Кроме портландцемента на основе портландцементного клинкера выпускают много других видов цементов.

Производство. Основные операции при получении портландцемента: приготовление сырьевой смеси, обжиг ее до получения цементного клинкера и помол клинкера совместно с добавками.

Соотношение компонентов сырьевой смеси выбирают с таким расчетом, чтобы полученный при обжиге клинкер имел следующий химический состав (%): СаО — 62...68, SiO2 — 18..26, А12О3 — 4...9, Fe2O3 — 2...6. В природе есть горная порода, обеспечивающая получение клинкера такого состава,— мергель, который представляет собой тесную смесь известняка с глиной. Но чаще используют известняк и глину (добываемые отдельно) в соотношении 3 : 1 (по массе). Кроме основных компонентов в сырьевую смесь вводят корректирующие добавки и промышленные отходы, обеспечивающие требуемый состав клинкера.

Тщательно подготовленную сырьевую смесь подают на обжиг во вращающуюся печь, которая представляет собой стальную трубу диаметром до 7 м и длиной до 185 м. Изнутри труба выложена огнеупорным кирпичом. Печь установлена под небольшим (3...4о) углом к горизонту и вращается (0,8... 1,3 мин-1), благодаря чему сырьевая смесь перемещается в ней от верхнего конца к нижнему, куда подается топливо. Максимальная температура обжига 1450°С. При таких высоких температурах оксид кальция СаО, образовавшийся в результате разложения известняка, взаимодействует с кислотными оксидами SiO2, А12О3 и Fe2O3, образующимися при разложении глины.

Таблица 8.1. Минеральный состав портлацщементного клинкера

Минерал Формула Количество, % Трехкальциевый силикат (алит) ЗСаО• SiO2(C3S) 42...65 Двухкальциевый силикат (белит) 2СаО• SiO2(C2S) 12...35 Трехкальциевый алюминат ЗСаО• А12О3(С3А) 4...14 Четырехкальциевый алюмоферрит 4СаО•А12О3•Fe2O3 (C4AF) 10...18 В скобках сокращенное обозначение клинкерных минералов.

Продукты взаимодействия, частично плавясь и спекаясь друг с другом, образуют так называемый портландцементный клинкер — плотные твердые куски серого цвета. В состав портландцементного клинкера входят четыре основных минерала (табл. 8.1) и небольшое количество стеклообразного вещества.

Как видно из таблицы, портландцементный клинкер в основном (на 60...80%) состоит из силикатов кальция, из-за чего портландцемент также называют силикатным цементом.

Для получения портландцемента клинкер размалывают в трубных или шаровых мельницах с гипсом и другими добавками. Свойства портландцемента зависят от его минерального состава и тонкости помола клинкера.

При взаимодействии с влагой воздуха активность портландцемента падает, поэтому его предохраняют от действия влаги. Портландцемент хранят в силосах (высоких цилиндрических емкостях из бетона или металла). На строительство его доставляют в специальных вагонах, автомобилях-цементовозах или упакованным в многослойные бумажные или полиэтиленовые мешки.

Твердение. При смешивании с водой частицы портландцемента

начинают растворяться, причем одновременно может происходить гидролиз (разложение водой) и гидратация (присоединение воды) продуктов растворения с образованием гидратных соединений.

По этой схеме (гидролиз и гидратация) взаимодействуют с водой главные компоненты клинкера алит C3S и белит C2S:

2(ЗСаО • SiO2) + 6Н2О ? ЗСаО • SiO2 • ЗН2О + ЗСа(ОН)2

2(2СаО• SiO2) + 4Н2О? ЗСаО • SiO2 • ЗН2О + Са(ОН)2

Необходимо подчеркнуть особенности этих реакций:

•C3S взаимодействует с водой намного активнее, чем C2S;

•при взаимодействии силикатов кальция с водой выделяется

растворимый в воде компонент Са(ОН)2 — воздушная известь, создающая щелочную реакцию в твердеющем цементе;

•C3S выделяет Са(ОН)2 в 3 раза больше, чем C2S; общее количество Са(ОН)2 достигает 15 % от массы цементного камня.

Алюминат кальция С3А подвергается только гидратации, причем этот процесс идет очень быстро с образованием крупных кристаллов

ЗСаО • А12О3 + 6Н2О ? ЗСаО • А12О3 • 6Н2О

Добавка гипса, вводимая при помоле клинкера, изменяет характер начального периода твердения С3А и замедляет схватывание цемента на несколько часов из-за образования эттрингита ЗСаО • А12О3 • 3CaSO4 • (31 - 33)Н2О.

Четырехкальциевый алюмоферрит C4AF взаимодействует с водой медленнее, чем С3А, образуя гидроалюминат и гидроферрит кальция.

Основной продукт твердения портландцемента — гидросиликаты кальция — практически нерастворимы в воде. Они выпадают из раствора сначала в виде геля (жесткого студня). Этот гель пронизывают, укрепляя его, кристаллы Са(ОН)2. Гель гидросиликатов кальция со временем кристаллизуется. Остальные продукты взаимодействия клинкера с водой также участвуют в формировании структуры цементного камня и, естественно, влияют на его свойства.

Процесс гидратации зерен портландцемента из-за малой их растворимости растягивается на длительное время (месяцы и годы). Чтобы этот процесс мог протекать, необходимо постоянное присутствие воды в твердеющем материале. Однако нарастание прочности со временем замедляется. Поэтому качество цемента принято оценивать по прочности, набираемой им в первые 28 суток твердения.

Технические характеристики портландцемента. К основным характеристикам портландцемента относятся истинная и насыпная плотность, тонкость помола, сроки схватывания, равномерность изменения объема при твердении и прочность затвердевшего цементного камня.

Плотность портландцемента в зависимости от вида и количества добавок составляет 2900...3200 кг/м3, насыпная плотность в рыхлом состоянии 1000... 1100 кг/м3, в уплотненном — до 1700 кг/м3.

Тонкость помола характеризуется количеством цемента, проходящим через сито с сеткой № 008 (размер отверстий 0,08 мм) и его удельной поверхностью. Согласно ГОСТу через сито с сеткой № 008 должно проходить не менее 95 % цемента, при этом удельная поверхность у обычного портландцемента должна быть в пределах 2900...3000 см2/г и у быстротвердеющего портландцемента 3500...5000 см2/г.

Сроки схватывания портландцемента, рассчитываемые от момента затворения, должны быть: начало — не ранее 45 мин; конец — не позднее 10 ч. Эти показатели определяют при температуре 20°С. Если цемент затворяют горячей водой (более 40°С), может произойти очень быстрое схватывание.

Прочность портландцемента характеризуется его маркой. Марку портландцемента определяют по пределу прочности при сжатии и изгибе образцов-балочек 40х40х160 мм, изготовленных из цементно-песчаного раствора (состава 1 : 3) стандартной консистенции и твердевших 28 суток (первые сутки в формах на влажном воздухе и 27 сут. в воде при 20°С).

Промышленность выпускает портландцемент четырех марок: 400; 500; 550 и 600 (цифра соответствует округленной в сторону уменьшения средней прочности образцов при сжатии выраженной в кгс/см2).

Тепловыделение при твердении. Твердение портландцемента сопровождается выделением большого количества теплоты. Так как эта теплота выделяется в течение длительного времени (дни, недели), заметного разогрева цементного бетона или раствора не происходит. Однако если объем бетона велик (например, при бетонировании плотин, массивных фундаментов), то потери теплоты в окружающее пространство будут незначительны по сравнению с общим количеством выделяющейся теплоты и возможен разогрев бетона до температуры 70...80° С, что приведет к его растрескиванию.

Равномерность изменения объема. При твердении цементное тесто уменьшается в объеме. Усадка на воздухе составляет около 0,5... 1 мм/м. При твердении в воде цемент немного набухает (до 0,5 мм/м). Однако изменение объема при твердении должно быть равномерным. Это свойство проверяют на лепешках из цементного теста, которые не должны растрескиваться после пропаривания в течение 3 ч (до пропаривания лепешки 24 ч твердеют на воздухе). Неравномерность изменения объема возникает из-за присутствия в цементе свободных СаО и MgO, находящихся в виде пережога.

9. Разновидности портландцемента

Для удовлетворения требований современного строительства к цементам промышленность на основе портландцементного клинкера выпускает различные виды портландцемента.

Быстротвердеющий портландцемент (БТЦ) отличается быстрым ростом прочности в первые дни твердения. Выпускают БТЦ двух марок: 400 и 500, которые в трехсуточном возрасте должны иметь предел прочности при сжатии соответственно не ниже 25 и 28 МПа.

В составе БТЦ преобладают активные минералы: трехкальциевый силикат C3S — 50...55 % и трехкальциевый алюминат С3А— 5... 10 %. Тонкость помола у БТЦ выше, чем у обычного портландцемента (удельная поверхность до 5000 см2/г), поэтому при хранении он, впитывая пары воды из воздуха, комкуется и быстро теряет активность. БТЦ применяют для бетонов сборных конструкций с повышенной отпускной прочностью и монолитных конструкций. Коррозионная стойкость у БТЦ пониженная.

Пластифицированный портландцемент получают, добавляя к клинкеру при помоле гидрофильные поверхностно-активные вещества (например, сульфитно-спиртовую барду ССБ) в количестве 0,15...0,25 %. Такой цемент повышает пластичность бетонных и растворных смесей по сравнению с обычным портландцементом при одинаковом расходе воды. Это позволяет уменьшить расход портландцемента, повысить прочность и морозостойкость бетонов и растворов.

Гидрофобный портландцемент получают, добавляя к клинкеру при помоле гидрофобные поверхностно-активные вещества ПАВ (0,05...0,5 % от массы цемента), образующие на зернах цемента водоотталкивающие пленки. В качестве таких добавок используют главным образом отходы переработки нефти (мылонафт, асидол).

Гидрофобный портландцемент благодаря наличию защитных пленок при хранении и транспортировании даже во влажных условиях не намокает, не комкуется и почти не теряет своей активности.

При перемешивании гидрофобного цемента с водой и заполнителями ПАВ сдирается с цементных зерен и переходит в состав бетона или раствора. Поэтому бетонные и растворные смеси на гидрофобном цементе отличаются повышенной пластичностью, а после затвердевания — повышенной морозостойкостью и водонепроницаемостью.

Применяется гидрофобный цемент в тех случаях, когда трудно обеспечить необходимые условия хранения обычного цемента.

Сульфатостойкий портландцемент изготовляют из клинкера с пониженным содержанием трехкальциевого силиката C3S (не более 50 %) и трехкальциевого алюмината С3А (не более 5%). При таком составе цемента уменьшается возможность образования в цементном камне гидросульфоалюмината кальция («цементной бациллы») и тем самым повышается стойкость бетона к сульфатной коррозии. Кроме того, сульфатостойкий цемент характеризуется пониженным тепловыделением при твердении. Сульфатостойкий цемент выпускают марок 300, 400, 500.

Белый портландцемент получают из белых каолиновых глин и чистых известняков или мела с минимальным содержанием окислов железа, марганца и хрома. В таком цементе практически нет алюмоферрита кальция С4АF, имеющего серо-зеленый цвет. На основе белого цемента и щелочестойких пигментов (сурика, ультрамарина и др.) получают цветные цементы. Марки таких цементов 300, 400 и 500. Применяют белый и цветные цементы для отделочных работ.

10. Портлавдцементы с минеральными добавками

Цементный клинкер — энергоемкий в производстве и дорогостоящий продукт. Поэтому во всех случаях, когда это допустимо, его заменяют более дешевыми природными продуктами или промышленными отходами. К таким смешанным цементам относятся шлакопортландцемент, пуццолоновый цемент и кладочные цементы.

Шлакопортландцемент получают путем совместного помола доменного гранулированного шлака (21...80 %), портландцементного клинкера (79...20 %) и гипса (не более 5 %).

Доменный шлак — отход производства чугуна (на 1 т чугуна приходится около 0,6 т шлака), поэтому шлакопортландцемент экономически выгоднее, чем портландцемент. Выпуск шлакопортландцемента в России составляет около 1/3 от общего выпуска цемента. Химический состав доменного гранулированного шлака близок к составу клинкера. К самостоятельному твердению шлак не способен, но в присутствии портландцемента и гипса он проявляет вяжущие свойства.

Шлакопортландцемент выпускают трех марок: 300, 400 и 500. По коррозионной стойкости и водостойкости он превосходит обычный портландцемент, но твердеет несколько медленнее и при этом выделяет меньше теплоты. Недостаток шлакопортландцемента — пониженная по сравнению с обычным портландцементом морозостойкость.

Пуццолановый портландцемент получают либо путем совместного помола портландцементного клинкера (79...60 %), активной минеральной добавки (21...40 %) и небольшого количества гипса, либо тщательным смешиванием этих же компонентов, но предварительно каждый из них измельчают. К активным минеральным добавкам относятся: вулканические туфы, пеплы и пемзы, диатомит, трепел, опока, золы ТЭС и другие вещества. Активные добавки связывают выделяющийся при твердении цемента Са(ОН)2 в нерастворимые гидросиликаты, благодаря чему повышаются водостойкость и коррозионная стойкость цементного камня. Пуццолановые цементы отличаются низким тепловыделением при твердении и пониженной скоростью твердения. Морозо- и воздухостойкость пуццолановых цементов ниже, чем портландцемента. Пуццолановый портландцемент выпускают марок: 300 и 400. Пуццолановый портландцемент применяют для гидротехнического строительства, а также для подземных и подводных сооружений.

Пуццолановый портландцемент и шлакопортландцемент, требуют увлажнения во время твердения.

Цементы для строительных, растворов (кладочные цементы) – это как бы разбавленный портландцемент. Содержание клинкера в таких цементах 20...30 %, а остальная часть цемента состоит из молотых активных и инертных (известняк, песок) добавок. Марка кладочных цементов 200. Такие цементы применяют для кладочных и штукатурных растворов и неармированных бетонов классов В12,5 и ниже. Использование кладочных цементов дает экономию цементного клинкера — наиболее дорогой части цементов.

11. Глиноземистый цемент

Глиноземистый цемент — быстротвердеющее гидравлическое вяжущее, состоящее преимущественно из моноалюмината кальция (СаО•А12О3). Свое название этот цемент получил от технического названия оксида алюминия А12О3 — «глинозем».

Промышленное производство глиноземистого цемента началось во Франции в 1912 г. под названием «цемент Фондю» (в Европе этот цемент до сих пор носит это название).

Получение. Сырьем для глиноземистого цемента служат бокситы и чистые известняки. Бокситы — горная порода, состоящая из гидратов глинозема (А12О3 • nН2О) и примесей (в основном Fe2O3, SiO2, СаО и др.). Бокситы широко используются в различных отраслях промышленности: для получения алюминия, абразивов, огнеупоров, адсорбентов и т.п., а месторождений с высоким содержанием А12О3 очень немного.

Производство глиноземистого цемента более энергоемко, чем производство портландцемента. Клинкер глиноземистого цемента получают либо плавлением в электрических или доменных печах (при 1500...1600° С), либо спеканием (при 1200...1300° С). Размол клинкера затруднен из-за его высокой твердости. В целом из-за того, что производство глиноземистого цемента очень энергоемко, а сырье (бокситы) — дефицитно, его стоимость в несколько раз выше, чем стоимость портландцемента.

Состав. Химический состав глиноземистого цемента, получаемого разными методами, находится в следующих пределах: СаО - 35...45 %; А12О3 - 30...50 %; Fe2O3 - 0...15 %; SiO2 - 5...15 %. В минеральном составе клинкера глиноземистых цементов преобладает однокальциевый алюминат СаО • А12О3 (СА), определяющий основные свойства этого вяжущего. Кроме того, в нем присутствуют алюминаты — СА2, С12А7; двухкальциевый силикат C2S, отличающийся, как известно, медленным твердением, и в качестве неизбежной балластной примеси — геленит - 2СаО • А12О3 • 2SiO2.

Твердение. Процесс твердения глиноземистого цемента и прочность образующегося цементного камня существенно зависят от температуры твердения. При нормальной температуре (до + 25° С) основной минерал цемента — СА взаимодействует с водой с образованием кристаллического гидроалюмината кальция и гидроксида алюминия в виде гелевидной массы:

2(СаО • А12О3) + 11Н2О = 2СаО • А12О3 • 8Н2О + 2А1(ОН)3 + Q

Суммарное тепловыделение (Q) у глиноземистого цемента немного ниже, чем у портландцемента (около 300...400 кДж/кг), но протекает оно в очень короткие сроки (в первые сутки выделяется 70...80 % от общего количества теплоты). Поэтому возможен перегрев бетонов на глиноземистом цементе в случае больших объемов бетонирования.

Свойства. У глиноземистого цемента удивительное сочетание свойств.

Сроки схватывания почти такие же, как у портландцемента: начало — не ранее 30 мин, конец — не позднее 12 ч (реально 4...5 ч).

После окончания схватывания прочность нарастает очень быстро (лавинообразно). Уже через сутки глиноземистый цемент набирает до 90 % от марочной прочности, которая у него определяется в 3-суточном возрасте. Марки у глиноземистого цемента такие же, как у портландцемента: 400; 500 и 600

Усадка глиноземистого цемента при твердении на воздухе ниже, чем у портландцемента, в 3...5 раз. Пористость цементного камня также ниже (приблизительно в 1,5 раза). Это связано с тем, что при одинаковой с портландцементом водопотребности глиноземистый цемент при твердении химически связывает 30...45 % воды от массы цемента (портландцемент — около 20 %).

Области применения. Глиноземистый цемент целесообразно использовать при аварийных и срочных работах, при зимних работах и в тех случаях, когда от бетона требуется высокая водостойкость и водонепроницаемость. Кроме того, глиноземистый цемент является компонентом многих расширяющихся цементов.

Специальная область использования глиноземистых цементов — жаростойкие бетоны. Объясняется это тем, что, во-первых, в продуктах твердения этого цемента нет Са(ОН)2, и, во-вторых, при температуре 700...800°С между продуктами твердения цемента и заполнителями бетона начинаются реакции в твердой фазе, по мере протекания которых прочность бетона не падает, а повышается, так как бетон превращается в керамический материал (опасность присутствия Са(ОН)2 заключается в том, что при нагреве он переходит в СаО, который при любом контакте с водой гасится, разрушая при этом бетон).

12. Расширяющиеся цементы

Портландцемент и материалы на его основе при твердении на воздухе обнаруживают усадку. Так, тесто на портландцементе при В/Ц = 0,45 имеет усадку на воздухе около 2,5 мм/м, а раствор на том же цементе ~1 мм/м. Из-за этого при бетонировании протяженных конструкций, например, покрытий полов, на них появляются трещины. В то же время растрескивание бетона абсолютно недопустимо, например, для конструкций, работающих под давлением воды, таких, как трубы, резервуары и т. п. Для этих целей применяют специальные расширяющиеся и безусадочные цементы.

Расширяющиеся цементы даже при твердении на воздухе имеют небольшое увеличение в объеме при твердении. Безусадочные цементы это расширяющиеся цементы, у которых расширение только компенсирует усадку. Поэтому такие цементы как бы сами уплотняют себя, делая бетон водонепроницаемым. В случае, если расширяющиеся цементы используются в железобетонных конструкциях, эффект расширения вяжущего может вызывать натяжение арматуры и сжатие самого бетона, что дополнительно защитит бетон от образования трещин. Такие цементы называют напрягающими.

Для строительных целей в основном используют цементы, в которых расширение достигается с помощью образования эттрингита — гидросульфоалюмината кальция ЗСаО • А12О3 • 3CaSO4 • (31 - 32) Н2О. Образование эттрингита возможно при взаимодействии алюминатов и сульфатов кальция в водной среде. Как видно из формулы, в состав эттрингита входит большое количество воды. Именно это обстоятельство обеспечивает эффект расширения: исходные твердые продукты, взаимодействуя друг с другом и гидратируясь (т. е. присоединяя воду), увеличиваются в объеме в 2...2,5раза.

В твердеющем материале на расширяющемся цементе протекают два процесса — расширение, обусловленное процессом кристаллизации эттрингита с увеличением объема новообразований и ростом внутренних растягивающих напряжений, и препятствующий расширению процесс — рост прочности самого цементного камня.

Если образование эттрингита будет протекать раньше, чем у цементного камня появится хотя бы небольшая прочность, то эттрингит будет сжимать податливую гелеобразную массу и заметного расширения не произойдет.

Если эттрингит будет образовываться в то время, когда цементный камень набрал достаточно высокую прочность, то напряжения, обусдовленные ростом кристаллов эттрингита в ограниченном объеме, могут вызвать падение прочности и даже разрушение цементного камня, как это имеет место при сульфатной коррозии.

Таким образом, главная задача при разработке составов расширяющихся и безусадочных вяжущих - правильный выбор не только количества образующегося эттрингита, но и момента его образования относительно процесса формирования структуры цементного камня. Для различных видов расширяющихся цементов период наиболее интенсивного и безопасного расширения цементного камня составляет от 12 ч до 3…7 суток в зависимости от свойств основного структурообразующего вяжущего.

При изготовлении железобетонной конструкции на напрягающем цементе энергия расширения вяжущего частично идет на создание растягивающих напряжений в арматуре. Реакция арматуры вызывает в бетоне сжимающие напряжения. Таким образом, получаются самонапряженные железобетонные конструкции высокой плотности и трещиностойкости. Такой метод самонапряжения используется при бетонировании емкостей для хранения газов и жидкостей, устройстве гидроизоляционных слоев. Например, при бетонировании чаши стадиона в Лужниках, которая одновременно является и крышей для помещений внизу, и полом, на котором находятся скамьи для зрителей, для обеспечения водонепроницаемости использовалась смесь на основе напрягающего цемента.

Перспективная область применения бетонов и растворов на расширяю-щихся и безусадочных вяжущих — бесшовные тонкослойные стяжки или лицевые покрытия полов большой площади. С помощью полимерных модификаторов таким смесям придают свойство самовыравнивания, а эффект безусадочности гарантирует трещиностойкость. Быстрое твердение и защитные полимерные добавки обеспечивают необходимое количество воды для протекания полной гидратации без какого-либо специального ухода.

Лекция 9. МАТЕРИАЛЫ НА ОСНОВЕ ВЯЖУЩИХ ВЕЩЕСТВ

9.1. Заполнители для бетонов и растворов

1. Общие сведения

В силу ряда причин изделия из одних только вяжущих не изготавливают. Вяжущие имеют высокую стоимость, обладают повышенной усадкой и ползучестью. Для исправления этих недостатков в изделия на основе минеральных (неорганических) вяжущих при их изготовлении вводят инертные материалы различной крупности, которые принято называть заполнителями.

Заполнители для бетонов и растворов — это природные или искусственные каменные сыпучие материалы, состоящие из отдельных зерен. Термин «заполнитель» указывает на роль этого материала в бетонах и растворах: заполнитель занимает до 85 % от общего объема бетона. Стоимость обычных заполнителей значительно меньше, чем стоимость вяжущего. Следовательно, чем больше в бетоне заполнителей, тем бетон дешевле.

Однако этим не исчерпывается роль заполнителей. Так, в цементных бетонах и растворах они снижают усадку материала и повышают его трещиностойкость. Кроме того, заполнители во многом определяют свойства бетона. Например, используя в качестве заполнителя чугунную дробь и железные руды, получают особо тяжелый бетон, защищающий от ионизирующих излучений, а применяя пемзу, керамзит или вспученные шлаки — легкий бетон, обладающий хорошими теплоизолирующими свойствами.

В зависимости от размера зерен заполнитель бывает:

• мелкий (песок) — зерна 0,16...5 мм;

• крупный — зерна 5...70 мм.

Крупный заполнитель в зависимости от формы зерен называют щебнем — зерна неправильной формы с шероховатой поверхностью или гравием — зерна округлой формы с гладкой поверхностью. Щебень получают дроблением более крупных кусков, в том числе и гравия.

Заполнители как крупные, так и мелкие могут быть:

• природными, добываемыми в карьерах и подвергаемые только рассеву, промывке и, если это необходимо, дроблению;

• искусственными, получаемыми из промышленных отходов (металлургических шлаков, зол электростанций и т. п.) или специальной

обработкой природного сырья (из глины получают керамзит, из перлита — вспученный перлит и др.).

В последнее время начинают использовать «вторичные» заполнители, выделяемые из отслуживших свой срок бетонных и железобетонных конструкций дроблением и рассевом.

Структура заполнителя характеризуется двумя показателями: межзерновой пустотностью и пористостью самих зерен заполнителя. Обобщенной характеристикой, учитывающей и межзерновую пустотность, и внутреннюю пористость зерен, служит насыпная плотность заполнителя ?нас, которая представляет собой массу единицы объема сыпучего материала, взятого вместе с пустотами:

По плотности зерен заполнители подразделяют: на плотные (тяжелые) с плотностью зерен более 2000 кг/м3 и пористые (легкие) имеющие пористую структуру зерен с плотностью менее 2000 кг/м (обычно 1600...400 кг/м3).

Заполнители для бетонов и растворов должны отвечать следующим требованиям:

• иметь определенный зерновой состав (соотношение зерен различного размера) для того, чтобы объем пустот между зернами (межзерновая пустотность) был минимальный, т. е. пустоты между крупными зернами были заняты более мелкими;

• поверхность зерен заполнителя должна обеспечивать хорошее сцепление с твердеющим вяжущим, т. е. по возможности быть шероховатой, и на ней не должно быть глинистых и пылеватых примесей;

• заполнитель не должен содержать примесей, отрицательно действующих на твердение вяжущего и на последующую прочность и стойкость бетона и раствора.

2. Мелкий заполнитель (песок)

Различают природный и искусственный мелкие заполнители.

Природный песок — рыхлая смесь зерен крупностью 0,16...5 мм — состоит главным образом из зерен кварца SiO2; возможна примесь полевых шпатов, слюды, известняка. Реже встречаются пески иного состава, например полевошпатные, известняковые. Насыпная плотность природного песка 1300... 1600 кг/м3.

По происхождению природные пески разделяют на горные (овражные), речные и морские.

Искусственные пески, используемые значительно реже, бывают тяжелые и легкие. Тяжелые пески, получаемые дроблением плотных горных пород (базальта, диабаза, мрамора), применяют для специальных целей (отделочные растворы, кислотостойкие растворы и бетоны).

Легкие пески получают дроблением пористых горных пород (пемза, туф) или изготовляют специально. Например, перлитовый песок получают термическим вспучиванием вулканических стекол; керамзитовый — обжигом глиняного сырья. Эти пески применяют для теплоизоляционных и акустических растворов и бетонов.

Поступающий на строительство песок должен отвечать требованиям ГОСТ 8736—93 и 8735—88 по зерновому составу, наличию примесей и загрязнений.

Зерновой состав песка определяют на стандартном наборе сит с размерами ячеек: 5; 2,5; 1,25; 0,63; 0,315 и 0,16 мм. Навеску сухого песка просеивают через набор сит и определяют сначала частные (%) (а 2,5; а 1,25; а 0.63 и т. д.), а затем полные {A2,5 ; A 1,25 и А 0,63 и т. д.) остатки на каждом сите. Полный остаток на любом сите равен сумме частных остатков на этом сите и всех ситах большего размера. Размеры полных остатков характеризуют зерновой состав песка.

На основании результатов ситового анализа рассчитывают модуль крупности песка:

Мк = (A2,5 + A 1,25 + А 0,63 + А 0,315 + А 0,16 )/100

В зависимости от Мк и А 0,16 пески подразделяют на группы по крупности. Для строительных растворов рекомендуется применять пески с модулем крупности не менее 1,2, а для бетонов — не менее 2.

Для бетонов применяют песок крупностью не более 5 мм, для растворов, используемых для замоноличивания сборных железобетонных конструкций и заполнения швов при монтаже панелей,— также не более 5 мм; для растворов, служащих для кладки кирпича, камней правильной формы и блоков,— не более 2,5 мм; для штукатурных отделочных растворов — не более 1,25 мм.

Присутствие в песке пылеватых и особенно глинистых примесей снижает прочность и морозостойкость бетонов и растворов. Количество таких примесей определяют отмучиванием (многократной промывкой водой). В природном песке пылеватых и глинистых примесей должно быть не более 3 % по массе, причем содержание собственно глины не должно превышать 0,5 %.

Присутствие в песке органических примесей замедляет схватывание и твердение цемента и тем самым снижает прочность бетона или раствора. Для оценки количества органических примесей пробу песка обрабатывают раствором едкого натра NaOH и сравнивают цвет раствора с эталоном. Если цвет раствора темнее эталона, песок нельзя использовать в качестве заполнителя.

3. Крупные заполнители

В качестве крупного заполнителя для бетона используют гравий и щебень. В зависимости от насыпной плотности и структуры зерен крупного заполнителя различают плотные (тяжелые) заполнители (?нас > 1200. кг/м3), используемые для тяжелого бетона, и пористые (?нас < 1200 кг/м3), используемые для легкого бетона.

Насыпная плотность крупного заполнителя — один из важных качественных показателей. Она зависит от плотности зерен заполнителя и от его межзерновой пустотности. Насыпная плотность ?нас определяется путем взвешивания пробы заполнителя в сосуде.

Межзерновая пустотность показывает, какую долю составляют пустоты между зернами крупного заполнителя от его объема в рыхло-насыпном состоянии. Она может быть рассчитана по формуле для расчета пористости, если известны насыпная плотность ?нас заполнителя и его плотность в куске ?m

? =(?m - ?нас )/ ?m

Межзерновая пустотность ? обычно составляет 0,4...0,5. Это означает, что около половины объема крупного заполнителя занимает воздух. При использовании в бетоне важно, чтобы межзерновая пустотность заполнителя была возможно меньше. В этом случае снижается расход цемента при сохранении требуемых свойств бетона. Уменьшить межзерновую пустотность заполнителя можно правильным подбором зернового состава так, чтобы мелкие зерна занимали пустоты между крупными.

К плотным заполнителям для тяжелого бетона относятся гравий, получаемый из природных залежей (его обработка заключается в сортировке по фракциям и промывке), и щебень, получаемый дроблением горных пород, крупных фракций гравия и плотных металлургических шлаков.

Прочность крупного заполнителя для тяжелых бетонов должна быть в 1,5...2 раза выше прочности бетона. Оценка прочности заполнителя может производиться по прочности той горной породы, из которой получен заполнитель, путем испытания выпиленных из нее кернов (цилиндрических образцов) или путем оценки дробимости самого заполнителя. Дробимость заполнителя оценивается по количеству мелочи, образующейся при сдавливании пробы заполнителя (гравия или щебня) в стальной форме под определенным усилием.

Морозостойкость заполнителя должна также быть выше проектной морозостойкости бетона.

Вредными примесями в крупном заполнителе, как и в песке, являются органические, пылеватые и глинистые. Методы их определения такие же, как и для песка.

Пористые заполнители для легких бетонов получают главным образом искусственным путем (например, керамзит, шлаковую пемзу, аглопорит и перлит). Из природных пористых заполнителей применяют щебень из пемзы, туфа и пористых известняков, которые используют в качестве местного материала. Марку пористых заполнителей устанавливают по их насыпной плотности (кг/м3).

Для пористых заполнителей еще в большей степени, чем для плотных, имеет значение правильный зерновой состав. Пористые заполнители выпускают в виде фракций размерами 5... 10 мм; 10...20 мм и 20...40 мм. При приготовлении бетонной смеси их смешивают в требуемом соотношении.

Керамзит — гранулы округлой формы с пористой сердцевиной и плотной спекшейся оболочкой. Благодаря такому строению прочность керамзита сравнительно высокая при небольшой насыпной плотности (250...600 кг/м3). Получают керамзит быстрым обжигом во вращающихся печах легкоплавких глинистых пород с большим содержанием оксидов железа и органических примесей до их вспучивания.

Керамзит выпускают в виде гравия (гранулы 5...40 мм) и песка (зерна менее 5 мм). Марки керамзита от 250 до 600 кг/м3. Морозостойкость керамзита не менее F15.

Шлаковая пемза — пористый щебень, получаемый вспучиванием расплавленных металлургических шлаков путем их быстрого охлаждения водой или паром. Этот вид пористого заполнителя экономически очень эффективен, так как сырьем служат промышленные отходы, а переработка их крайне проста. Марки шлаковой пемзы от 400 до 1000. Прочность ее соответственно от 0,4 до 2 МПа.

Аглопорит — пористый заполнитель в виде гравия, щебня, получаемый спеканием (агломерацией) сырьевой шихты из глинистых пород топливных отходов. Марки аглопорита от 400 до 900.

Вспученные перлитовый песок и щебень — пористые зерна белого или светло-серого цвета, получаемые путем быстрого (1...2 мин) нагрева до температуры 1000... 1200° С вулканических горных пород, содержащих небольшое количество (1...3 %) гидратной воды (перлит и др.).

9.2. Строительные растворы

1. Общие сведения

Строительным раствором называют материал, получаемый в результате затвердевания рационально подобранной смеси вяжущего вещества (цемента, извести), мелкого заполнителя (песка) и воды, а в необходимых случаях и специальных добавок. До затвердевания этот материал называют растворной смесью.

Принципиальным отличием строительных растворов от мелкозернистых бетонов является то, что растворные смеси укладываются тонкими слоями обычно на пористое основание и одним из главных свойств растворов является хорошее сцепление с основанием.

По назначению строительные растворы бывают: кладочные — для кладки из кирпича, штучных камней и блоков; отделочные (штукатурные) — для оштукатуривания наружных и внутренних поверхностей конструкций; специальные — для омоноличивания сборных железобетонных конструкций, для устройства гидроизоляции и других специальных целей.

Растворы называют по свойствам входящего в них вяжущего (гидравлические, воздушные) и его виду (цементные, известковые, гипсовые и смешанные: цементно-известковые, цементно-глиняные, известково-гипсовые).

По плотности различают растворы обыкновенные тяжелые (плотность более 1500 кг/м3), получаемые на плотных заполнителях (природный песок и др.), и легкие (менее 1500 кг/м3), изготовляемые на пористых заполнителях (керамзитовый песок, вспученный перлит и др.). Легкие растворы, кроме того, получают с помощью специальных пенообразующих добавок — поризованные растворы.

2. Свойства растворных смесей и затвердевших растворов

Растворная смесь должна обладать следующими свойствами: хорошей удобоукладываемостью и высокой водоудерживающей способностью, чтобы легко распределяться по пористому основанию и не давать ему отсасывать в себя воду. Вода необходима для твердения раствора.

Удобоукладываемость - способность растворной смеси легко распределяться по поверхности сплошным тонким слоем, хорошо сцепляясь с поверхностью основания. Удобоукладываемая растворная смесь даже при укладке на неровной поверхности заполняет все впадины и плотно примыкает к камням кладки. Удобоукладываемость оценивается подвижностью смеси, которую оценивают по глубине погружения эталонного конуса.

В зависимости от назначения применяют растворы различной подвижности. например для бутовой кладки применяют растворы подвижностью 4...6 см, для кладки из пустотелого кирпича и керамических камней - 7...8см, для кладки из обыкновенного керамического кирпича - 9... 13см, для штукатурных растворов - 7...12 см.

Для повышения пластичности в раствор вводят пластифицирующие добавоки.

Водоудерживающая способность — это способность растворной смеси удерживать воду при нанесении на пористое основание или при транспортировании. Если растворную смесь с малой водоудерживающей способностью нанести, например, на кирпич, то она быстро обезводится в результате отсасывания воды в поры кирпича. В этом случае затвердевший раствор будет пористым и непрочным.

При транспортировании растворные смеси с низкой водоудерживающей способностью могут расслоиться: песок осядет вниз, а вода окажется сверху. Чем ниже водоудерживающая способность, тем вероятнее расслоение растворной смеси.

Водоудерживающая способность зависит от количества вяжущего вещества в растворе, так как тончайший порошок вяжущего образует с водой вязкое тесто, препятствуя отделению воды и заполнителя. Повысить водоудерживающую способность без увеличения расхода цемента можно введением в растворную смесь тонкодисперсньгх минеральных порошков, в том числе и более дешевых вяжущих (извести, глины) или загущающих (водоудерживающих) водораство-римых полимерных добавок, таких, как метилцеллюлоза, карбоксиметил-целлюлоза, и т. п.

Затвердевший раствор должен иметь требуемые прочность и морозостойкость.

Прочность строительных растворов характеризуется маркой, определяемой по пределу прочности при сжатии образцов-кубов размером 70,7 х 70,7 х 70,7 мм. Образцы, изготовленные из рабочей растворной смеси, твердеют на воздухе в течение 28 сут при температуре (20 ± 5)° С. Чтобы приблизить условия твердения образцов к реальным условиям твердения кладочных растворов, используют формы без дна и устанавливают их на пористое основание (кирпич).

По прочности на сжатие, выраженной в кгс/см2, строительные растворы делят на марки: 4…200. Растворы марок 4; 10; 25 изготовляют обычно на извести и местных вяжущих; растворы более высоких марок — на смешанном цементно-известковом, цементно-глиняном и цементном вяжущих.

Прочность строительных растворов, так же, как и бетонов, зависит от марки вяжущего и его количества. Однако водовяжущее отношение в данном случае не имеет существенного значения, так как пористое основание, на которое наносят раствор, отсасывает из него воду, и количество воды в разных растворах становится приблизительно одинаковым.

Марки наиболее часто применяемых кладочных и штукатурных растворов значительно ниже марок бетона. Это объясняется тем, что прочность кладочных растворов существенно не влияет на прочность кладки из камней правильной формы, а штукатурные растворы практически не несут никакой нагрузки. Более высокие требования предъявляются к прочности растворов для омоноличивания несущих сборных конструкций.

Морозостойкость растворов, так же, как и бетонов, определяется числом циклов «замораживания-оттаивания» до потери 25 % первоначальной прочности (или 5 % массы). По морозостойкости растворы подразделяют на марки: F10...F200.

3. Подготовка сырьевых материалов.

Для кладочных растворов применяют песок максимальной крупности 2,5 мм; содержание в нем глинистых и органических примесей ограничено стандартом. Известь применяют в виде известкового молока или реже известкового теста, предварительно пропущенного через сито № 025, чтобы в раствор не попали не погасившиеся частицы.

Когда вместо извести используют глину, то ее тщательно размачивают в течение нескольких дней. Делают это для того, чтобы разъединить частицы глины. Затем глину и воду приблизительно в равных объемах загружают в смеситель и перемешивают в течение 3...5 мин. Получившееся глиняное молоко сливают из смесителя через сетку, а в смеситель добавляют новую порцию воды и глины. Через 10...20 замесов смеситель очищают от не распавшихся комьев и камней.

Поверхностно-активные и пластифицирующие добавки вводят в растворы, предварительно смешав их с водой, применяемой для затворения.

4. Приготовление растворов.

Процесс приготовления растворной смеси состоит из дозирования исходных материалов, загрузки их в барабан растворосмесителя и перемешивания до получения однородной массы в растворосмесителях периодического действия с принудительным перемешиванием.

По конструкции различают растворосмесители с горизонтальным или вертикальным лопастными валами. Последние называют турбулентными смесителями.

Чтобы раствор обладал требуемыми свойствами, необходимо добиться однородности его состава. Для этого ограничивают минимальное время перемешивания. Средняя продолжительность цикла перемешивания для тяжелых растворов должна быть не менее 3 мин. Легкие растворы перемешивают дольше.

Растворы, как правило, приготовляют на централизованных бето-норастворных заводах или растворных узлах, что обеспечивает получение продукции высокого качества.

Зимой для получения растворов с положительной температурой составляющие раствора (песок и воду) подогревают до температуры не более 60° С. Вяжущее подогревать нельзя.

Транспортирование. Растворные смеси с заводов перевозят автосамосвалами или специальными машинами, в которых смесь постоянно перемешивается, что предохраняет ее от расслоения. Если используют автосамосвалы, во избежание расслоения смеси нормируется дальность ее перевозок (например, дальность перевозок цементно-известковых растворов по асфальтовой дороге — не более 10 км, по булыжной — 5..6 км).

На крупных стройках растворную смесь подают к месту использования по трубам с помощью растворонасосов.

Сроки хранения растворных смесей зависят от вида вяжущего и ограничиваются сроками его схватывания. Известковые растворы сохраняют свои свойства долго (пока из них не испарится вода).

В высохший известковый раствор можно добавить воду и вторично перемешать его. Цементные растворы необходимо использовать в течение 2...4 ч; разбавление водой и повторное перемешивание схватившихся цементных растворов не допускаются, так как это приводит к резкому падению марки раствора.

4. Кладочные растворы

При монтаже стен горизонтальные швы между панелями из тяжелого бетона заполняют раствором марки не ниже 100, из легкого бетона — не ниже 50. При монтаже стен из крупных блоков марки раствора для заполнения горизонтальных швов указываются в проекте (обычно 10...50). Для расшивки вертикальных швов панельных и крупноблочных стен марка раствора должна быть не ниже 50.

Для монтажа несущих железобетонных конструкций марка цементного раствора должна быть не ниже класса бетона этой конструкции.

При работах в зимних условиях марки растворов должны быть на одну ступень выше, чем растворов, используемых для этих же целей летом. Растворы для зимних работ могут выпускаться подогретыми. Температура раствора в момент его применения должна быть не менее 10° С.

В зимних условиях применяют также растворы, твердеющие при отрицательных температурах. В их состав входят соли, понижающие температуру замерзания воды (поташ К2СО3, хлорид натрия NaCl, хлорид кальция СаС12, нитрит натрия NaNO2 и др.). Например, при температуре от -10 до -20°С рекомендуется применять растворы с добавкой поташа (10% от массы вяжущего) или нитрита натрия (5% от массы вяжущего). При более низкой температуре добавки солей увеличивают.

При применении химических добавок к растворам следует руководствоваться специальными инструкциями.

5. Штукатурные растворы

При выборе штукатурных растворов можно руководствоваться следующими рекомендациями.

Для оштукатуривания наружных каменных и бетонных стен, в том числе подвергающихся увлажнению, применяют цементные и цементно-известковые растворы, для деревянных и гипсовых стен — известковые растворы с добавкой глины или гипсового вяжущего.

Для оштукатуривании стен в помещениях с влажностью воздуха во время эксплуатации не более 60 % используют следующие растворы:

• известковые и цементно-известковые — для внутренних поверхностей наружных каменных и бетонных стен, а также поверхностей бетонных покрытий;

• известковые - для поверхностей внутренних каменных или бетонных стен и перегородок;

• известково-гипсовые и гипсовые с добавлением наполнителя - для гипсовых перегородок.

Штукатурные растворы должны иметь хорошее сцепление с оштукатуриваемой поверхностью как после твердения, так и в момент нанесения. Последнее обеспечивается правильным составом растворной смеси и правильно выбранной подвижностью. В таком случае благодаря тиксотропным свойствам смеси она легко наносится и хорошо удерживается на вертикальных и потолочных поверхностях.

7. Специальные растворы

Кроме обычных штукатурных и кладочных растворов в строительстве используют много разнообразных растворов специального назначения: гидроизоляционных, теплоизоляционных, акустических, рентгенозащитных, кислотоупорных и т. п. Каждый из таких растворов является штукатурным раствором, выполняющим еще одну специальную функцию. Такие растворы используют для покрытия поверхностей специальных сооружений: хранилищ, отстойников, тоннелей и т. п.

Гидроизоляционные растворы — это, как правило, жирные цементные растворы (состава 1:1...1:3), приготовленные на специальных цементах или с добавками, снижающими до минимума капиллярную пористость и (или) придающими гидрофобные свойства растворам.

Растворы на расширяющихся и напрягающих (НЦ) цементах — наиболее распространенный простой по составу и надежный вид гидроизоляционных растворов. Минимальная пористость раствора достигается за счет эффекта расширения твердеющего цемента и связывание цементом большого количества воды затворения. При это расширение и уплотнение цементного камня идет тем интенсивнее чем больше на него действует вода из окружающей среды.

Растворы на жидком стекле дают не только водонепроницаемые, но и непроницаемые для нефтепродуктов покрытия. Чтобы получить водонепроницаемый раствор, жидкое стекло разводят в воде и этим составом затворяют сухую цементно-песчаную смесь. Затвердевая, жидкое стекло образует на поверхности штукатурного слоя водонепроницаемую пленку. Однако эта пленка может разрушаться под действием углекислого газа, содержащегося в воздухе, поэтому накрывку обычно выполняют жирным цементным раствором и поверхность железнят (посыпают сухим цементом и заглаживают).

Растворы с жидким стеклом схватываются уже через 1...2 мин после их затворения. Схватывание происходит тем быстрее, чем больше в растворе жидкого стекла. Поэтому приготовлять раствор надо малыми порциями, сразу же их используя. Быстрое схватывание растворов на жидком стекле позволяет заделывать ими такие трещины, из которых сочится вода.

Водонепроницаемые штукатурки получают также из растворных смесей с алюминатом натрия (Na2O • А12О3). Эти растворы используют реже, чем растворы на жидком стекле, так как они раздражающе действуют на кожу и слизистые оболочки. Растворы с алюминатом натрия применяют для заделки трещин в бетоне, через которые просачивается вода, для устройства водонепроницаемых штукатурок по сырым, невысыхающим поверхностям бетона и каменной кладки, а также для устройства водонепроницаемых цементных стяжек в санузлах.

Для приготовления штукатурных растворов сухую цементно-песчаную смесь состава 1:(2...3) затворяют 2...3 %-ным раствором алюмината натрия. Растворы эти приготовляют на портландцементе марки 400...500.

Растворы с органическими добавками. К таким растворам относятся полимерцементные растворы, содержащие 10... 15 % (в пересчете на сухое вещество) водных дисперсий полимеров (поливинилацетата–ПВА, синтетических каучуков, акриловых полимеров и др.). Такие растворы имеют высокую адгезию к любым основаниям и низкую проницаемость для воды, нефтепродуктов и других жидкостей.

Гидрофобизированные растворы получают, вводя в состав растворной смеси кремнийорганические полимерные продукты (например, ГКЖ-94).

Растворы для оштукатуривания печей. Кирпичные печи в большинстве случаев оштукатуривают глиняными растворами. Состав этих растворов зависит от жирности глины. Так, для глины средней жирности оптимальный состав раствора 1 : 2.

Лучшие результаты дают смешанные растворы с добавкой асбеста; например, глиноизвестковые или глиноцементные состава 1:1:2 с добавкой 0,1 ч асбеста. При составлении таких растворов асбест перемешивают с песком или с цементно-песчаной смесью. Затворяют смесь глиняным или известковым молоком.

Теплоизоляционные растворы получают, используя в качестве заполнителя пористые материалы (вспученный перлит, керамзитовый песок, опилки и т. п.). Составы и способы их приготовления не отличаются от составов и способов приготовления растворов с песчаным заполнителем; обычно несколько увеличивается время перемешивания.

Акустические растворы. Чтобы снизить шумы в помещениях, например, радиостудиях, их стены оштукатуривают акустическими растворами. Для этого применяют легкие растворы плотностью 600... 1200 кг/м3, заполнителем в которых служат пористые пески крупностью 3...5 мм, получаемые из пемзы, шлаков, вспученного перлита, керамзита и др. Так, например, производят сухие гипсоперлитовые смеси для устройства теплоизоляционных и акустических штукатурок. В состав таких смесей входят песок из вспученного перлита, гипс и замедлитель схватывания.

Огнезащитные растворы имеют состав, аналогичный акустическим и теплоизоляционным растворам, но с добавлением асбеста или минераловатных гранул. В качестве связующего рекомендуется гипсовое вяжущее.

Ренттенозащитные растворы. Это тяжелые растворы с плотностью более 2200 кг/м5, применяемые для оштукатуривания рентгеновских кабинетов и помещений, в которых ведутся работы, связанные с рентгеновским или ?-излучением. Такая штукатурка заменяет обшивку свинцовыми листами. В качестве вяжущих материалов используется портландцемент или шлакопортландцемент и специальные тяжелые заполнители — барит, железные руды — магнезит, лимонит и т. п. в виде песка и пыли крупностью не более 1,25 мм.

Кислотоупорные растворы. Это растворы на кислотоупорном жид-костекольном вяжущем, применяемые для устройства антикоррозионных покрытий конструкций, которые в процессе эксплуатации подвергаются воздействию кислот.

В кислотоупорные растворы кроме песка вводят тонкомолотый наполнитель - порошок из кислотостойких пород (андезита, диабаза). В наполнителе должно быть не менее 70 % зерен размером до 0,075 мм.

В качестве отвердителя растворов на жидком стекле применяют мелко измельченный кремнефтористый натрий, в количестве около 15 % от массы жидкого стекла.

9.3. Бетоны

1. Общие сведения

Бетон — искусственный каменный материал, получаемый в результате формования и затвердевания бетонной смеси. Бетонной смесью называют перемешанную до однородного состояния пластичную смесь, состоящую из вяжущего вещества, воды, заполнителей и специальных добавок.

Состав бетонной смеси подбирают таким образом, чтобы при данных условиях укладки и твердения бетон обладал заданными свойствами (прочностью, морозостойкостью, плотностью и др.).

Бетон состоит из большого количества зерен заполнителя (до 80...85 % объема), связанных затвердевшим вяжущим веществом. Так как в качестве заполнителей применяют дешевые природные материалы или отходы промышленности, бетон экономически весьма эффективный материал.

Бетон известен давно. В Древнем Риме, например, из бетона на извести был построен ряд сложных инженерных сооружений. Существует мнение, что блоки внутренней части египетских пирамид также изготовлены из бетона, вяжущим в котором служила известь. Широкое применение бетона начинается после освоения промышленного производства портландцемента. Современное строительство немыслимо без бетона — бетон стал основным строительным материалом. Это объясняется его экономичностью, технологичностью и доступностью основных сырьевых материалов.

Бетонная смесь представляет собой пластично-вязкую массу, сравнительно легко принимающую любую форму и затем самопроизвольно переходящую в камневидное состояние. Таким образом, легко получают каменные конструкции и изделия любой заданной формы.

В наше время получают бетоны с самыми разнообразными физико-механическими свойствами. Помимо обычного тяжелого бетона, производят легкий бетон плотностью меньшей, чем у кирпича. Такой бетон обладает хорошими теплоизолирующими свойствами и применяется для возведения стен жилых и промышленных зданий. И наоборот, при строительстве ядерных установок, например атомных электростанций, для защиты от ионизирующего излучения применяют особо тяжелые бетоны, плотность бетона которых в 1,5..2 раза больше плотности гранита.

Прочность бетонов достигает 100 МПа, и для конструкционных бетонов предел прочности служит основной характеристикой. Бетон - огнестойкий материал. В настоящее время получены бетоны, стойкие к самым разнообразным агрессивным воздействиям, и в том числе жароупорные бетоны, способные работать при температуре свыше 1000°С. При сочетании бетона и стали получается композиционный материал с еще более совершенными свойствами — железобетон.

По плотности бетоны делят на особо тяжелые (плотность более 2500 кг/м3), тяжелые обыкновенные (2200...2500 кг/м3), облегченные (1800...2200 кг/м3), легкие (500... 1800 кг/м3), особо легкие теплоизоляционные (500 кг/м3).

По структуре различают бетоны со слитной структурой, ячеистые и крупнопористые бетоны. Чаще других используются бетоны со слитной структурой — это обычный тяжелый бетон и легкие бетоны на пористых заполнителях.

Легкие и особо легкие бетоны можно получить вспенивая тесто вяжущего — так получают бетоны ячеистой структуры (с равномерно распределенными порами размером 0,2...2 мм).

Бетоны крупнопористой структуры, также относящиеся к легким бетонам, получают исключая из состава бетона мелкий заполнитель и скрепляя зерна крупного заполнителя вяжущим веществом.

Бетоны — главнейший строительный материал. В нем сочетаются очень важные для строительства свойства: большая сырьевая база (до 85 % объема бетона - заполнители); простота технологии и достаточно высокие физико-механические свойства.

Наиболее распространен тяжелый цементный бетон. Рассмотрим свойства бетонной смеси и затвердевшего бетона на примере тяжелого цементного бетона и будем называть его просто бетон.

2. Свойства бетонной смеси

Бетонная смесь состоит из цементного теста, мелкого и крупного заполнителя. Каждый из этих компонентов влияет на вязкопластичные свойства смеси. Так, если увеличить содержание заполнителей, смесь становится более жесткой; если цементного теста — более пластичной и текучей. Существенно влияет на свойства бетонной смеси и вязкость цементного теста. Чем больше в цементном тесте воды, тем пластичнее получается тесто и соответственно пластичнее бетонная смесь.

Одно из основных свойств бетонной смеси — тиксотропия — способность разжижаться при периодически повторяющихся механических воздействиях (например, вибрации) и вновь загустевать при прекращении этого воздействия. Механизм тиксотропного разжижения заключается в том, что при вибрировании силы внутреннего трения и сцепления между частицами уменьшаются и бетонная смесь становится текучей. Это свойство широко используют при укладке и уплотнении бетонной смеси.

Удобоукладываемость - обобщенная техническая характеристика вязкопластичных свойств бетонной смеси. Под удобоукладываемостью понимают способность бетонной смеси под действием определенных приемов и механизмов легко укладываться в форму и уплотняться, не расслаиваясь. Удобоукладываемость смесей в зависимости от их консистенции оценивают по подвижности или жесткости.

Подвижность служит характеристикой удобоукладываемости пластичных смесей, способных деформироваться под действием собственного веса. Подвижность характеризуется осадкой стандартного конуса, отформованного из испытуемой бетонной смеси. Для этого металлическую форму-конус, установленную на горизонтальной поверхности, заполняют бетонной смесью в три слоя, уплотняя каждый слой штыкованием. Избыток смеси срезают, форму-конус снимают и измеряют осадку конуса из бетонной смеси — ОК, значение которой (в сантиметрах) служит показателем подвижности.

Жесткость — характеристика удобоукладываемости бетонных смесей, у которых не наблюдается осадки конуса (ОК = 0). Ее определяют по времени вибрации (в секундах), необходимому для выравнивания и уплотнения предварительно отформованного конуса из бетонной смеси с помощью специального прибора – вискозиметра.

В зависимости от удобоукладываемости различают жесткие и подвижные бетонные смеси.

Жесткие бетонные смеси содержат небольшое количество воды и соответственно пониженное количество цемента в сравнении с подвижными смесями у бетонов равной прочности. Жесткие смеси требуют интенсивного механического уплотнения: длительного вибрирования, вибротрамбования и т. п. Используют такие смеси при изготовлении сборных железобетонных изделий в заводских условиях (например, на домостроительных комбинатах); в построечных условиях жесткие смеси применяют редко.

Подвижные смеси отличаются большим расходом воды и соответственно цемента. Эти смеси представляют собой густую массу, которая легко разжижается при вибрировании. Подвижные смеси можно транспортировать бетононасосами по трубопроводам.

Связность — способность бетонной смеси сохранять однородную структуру, т. е. не расслаиваться в процессе транспортирования, укладки и уплотнения. При механических воздействиях часть воды как наиболее легкого компонента отжимается вверх. Крупный заполнитель, плотность которого обычно больше плотности растворной части (смеси цемента, песка и воды), опускается вниз. Легкие заполнители (керамзит и др.), наоборот, могут всплывать. Все это делает бетон неоднородным, снижая его прочностные показатели и морозостойкость.

Указанные свойства бетонной смеси обеспечиваются правильным подбором состава бетона.

3. Основной закон прочности бетона

Прочность бетона зависит от прочности составляющих его материалов и от прочности сцепления их друг с другом. Прочность заполнителя (песка, щебня, гравия) в тяжелом бетоне, как правило, выше заданной прочности бетона, поэтому мало влияет на последнюю. Таким образом, прочность бетона определяется в основном двумя факторами:

• прочностью затвердевшего цементного камня;

• прочностью его сцепления с заполнителем.

Прочность цементного камня зависит от двух факторов: активности (марки) используемого цемента и соотношения количеств цемента и воды (Ц/В).

Цемент при твердении химически связывает не более 20...25 % воды от своей массы. Чтобы обеспечить необходимую пластичность цементного теста и, соответственно, подвижность бетонной смеси, необходимо вводить 40...80 % воды от массы цемента. Чем больше в бетоне будет свободной, химически не связанной воды, тем больше впоследствии будет пор в цементном камне и соответственно ниже станет его прочность.

С другой стороны, если не обеспечить необходимую удобоукладываемость бетонной смеси, соответствующую принятому в данном конкретном случае методу уплотнения, то из-за недоуплотнения в структуре бетона появятся крупные пустоты и участки с нарушенной связью «цементный камень - заполнитель», что приведет к резкому снижению прочности бетона.

Для каждой бетонной смеси существует оптимальное количество воды, которое позволяет получить при данном способе уплотнения бетон с минимальной пористостью и наибольшей прочностью.

Прочность сцепления между цементным камнем и заполнителем определяется в основном качеством поверхности заполнителя. Для обеспечения высокой прочности сцепления поверхность зерен заполнителя должна быть чистой и шероховатой. Например, бетон на щебне при прочих равных условиях прочнее бетона на гравии.

Высказанные теоретические предпосылки были положены в основу экспериментальных исследований зависимости прочности бетона от Ц/В, марки цемента и качества заполнителей (под прочностью здесь и далее подразумевается марочная прочность, т. е. прочность после 28 суток твердения в стандартных условиях). Полученные экспериментальные зависимости R = (Ц/В) представляют довольно сложную кривую, имеющую точку перегиба. С некоторым приближением эту кривую в реальном интервале Ц/В (от 1,4 до 3,3) можно аппроксимировать двумя прямыми, описываемыми уравнением вида

Rб = АRц(Ц/В ± b)

Приведенная формула предложена И. Боломеем и уточнена Б.Г, Скрамтаевым. Она выражает основной закон прочности бетона и используется для определения состава бетона по заданным параметрам.

Для обычных бетонов (марок ниже М500) в интервале Ц/В = 1,4...2,5 формула Боломея - Скрамтаева имеет вид

Rб = АRц(Ц/В – 0,5)

а для высокопрочных бетонов при Ц/В = 2,5...3,3

Rб = АRц(Ц/В + 0,5)

Эта зависимость справедлива лишь при условии обеспечения плотной укладки бетонной смеси.

4. Основы технологии бетона

Изготовление бетонных и железобетонных конструкций включает в себя следующие технологические операции: подбор состава бетона, приготовление и транспортирование бетонной смеси, ее укладку и уплотнение и обеспечение требуемого режима твердения бетона.

Подбор состава бетона. Состав бетона должен быть таким, чтобы бетонная смесь и затвердевший бетон имели заданные значения свойств (удобоукладываемости, прочности, морозостойкости и т. п.), а стоимость бетона при этом была возможно более низкой.

Рассчитывают состав бетона для данных сырьевых материалов, используя зависимости, связывающие свойства бетона с его составом, в виде формул, таблиц и номограмм. Общая схема расчета следующая.

Требуемая подвижность бетонной смеси обеспечивается выбором (по таблицам и графикам) необходимого количества воды (В).

Требуемая прочность бетона достигается: 1) выбором марки цемента; 2) расчетом требуемого соотношения цемента и воды (Ц/В) по формуле основного закона прочности бетона (см. выше).

Количество цемента определяется по известным значениям В и В/Ц: Ц = В : (В/Ц).

Количество крупного и мелкого заполнителей рассчитывают так, чтобы расход цемента был минимальным. Это достигается в том случае, если количество крупного заполнителя будет максимально возможным (обычно оно составляет 0,75...0,85 от объема бетона), а мелкий заполниитель (песок) заполнит пустоты между зернами крупного заполнителя.

В этом случае цементное тесто должно будет заполнить пустоты в песке и покрыть поверхность заполнителей для обеспечения связи всех частиц друг с другом .

Увеличивая или уменьшая содержание цементного теста (но не изменяя при этом рассчитанного Ц/В), т. е, увеличивая и уменьшая долю воды в бетонной смеси, можно соответственно повысить или снизить подвижность бетонной смеси, сохраняя заданную прочность бетона.

Приготовление бетонной смеси осуществляют в специальных агрегатах - бетоносмесителях разных конструкций и различной вместимости (от 100 до 4500 дм3).

Вместимость смесителя указывается по суммарному объему сухих компонентов бетонной смеси, который может быть загружен.

При перемешивании мелкие компоненты смеси входят в межзерновые пустоты более крупных (песок в пустоты между зерен крупного заполнителя, цемент — в пустоты песка). Этому способствует введение в смеситель воды затворения. В результате объем готовой бетонной смеси составляет не более 0,6...0,7 от объема исходных сухих компонентов. Этот показатель, называемый коэффициент выхода бетонной смеси.

Так, для бетона с коэффициентом выхода 0,65 за один замес в бетоносмесителе вместимостью 500 дм3 получится 500 • 0,65 = 325 дм3 = 0,325 м3 бетонной смеси.

По принципу действия различают бетоносмесители свободного падения и принудительного перемешивания.

Время перемешивания зависит от подвижности бетонной смеси и вместимости бетоносмесителя. Чем меньше подвижность бетонной смеси и больше вместимость бетоносмесителя, тем больше время, необходимое для перемешивания. Например, для бетоносмесителя 500 дм3 оно составляет 1,5...2 мин, а для бетоносмесителя 2400 дм3 - 3 мин и более.

Бетоносмесительные установки могут быть передвижные и стационарные. Чаще бетонные смеси приготовляют на специализированных бетонных заводах, имеющих высокую степень механизации и автоматизации. В этом случае будет выше стабильность свойств бетонной смеси и бетона. Такие готовые смеси называют товарным бетоном.

Транспортирование бетонной смеси. Обязательное требование ко всем видам транспортирования бетонной смеси - сохранение ее однородности и подвижности. На большие расстояния транспортирование осуществляется в специальных машинах — бетоновозах, имеющих грушевидную емкость. При движении емкость бетоновоза медленно вращается, постоянно подмешивая бетонную смесь. Это необходимо для того, чтобы смесь не расслаивалась от вибрации во время перевозки, что часто происходит, когда смесь транспортируют в кузовах самосвалов. В зимнее время должен быть предусмотрен подогрев перевозимой бетонной смеси.

На строительных объектах и заводах сборного железобетона смесь транспортируют в вагонетках, перекачивают бетононасосами и подают транспортерами.

Укладка бетонной смеси. Качество и долговечность бетона во многом зависят от правильности укладки, а методы укладки и уплотнения определяются видом бетонной смеси (пластичная или жесткая, тяжелый или легкий бетон) и типом конструкции. Укладка должна обеспечивать максимальную плотность бетона (отсутствие пустот) и неоднородность состава по сечению конструкции.

Пластичные текучие смеси уплотняются под действием собственного веса или путем штыкования, более жесткие смеси — вибрированием

Вибрирование — наиболее эффективный метод укладки, основанный на использовании тиксотропных свойств бетонной смеси. При вибрировании частицам бетонной смеси передаются быстрые колебательные движения от источника колебаний - вибратора. Применяют главным образом электромехани-ческие вибраторы, основная часть которых - электродвигатель. На валу электродвигателя эксцентрично установлен груз - дебаланс, при вращении которого возникают колебательные импульсы.

При вибрировании жесткая бетонная смесь как бы превращается в тяжелую жидкость, которая плотно заполняет все части формы, а воздух, содержащийся в бетонной смеси, при этом поднимается вверх и выходит из смеси. Бетонная смесь приобретает плотную структуру.

При недостаточном времени вибрирования бетонная смесь уплотняется не полностью, при слишком долгом - она может расслоиться: тяжелые компоненты - щебень, песок концентрируются внизу, а вода выступает сверху.

Твердение бетона. Нормальный рост прочности бетона происходит при положительной температуре (15...25° С) и постоянной влажности. Соблюдение этих условий особенно важно в первые 10... 15 суток твердения, когда бетон интенсивно набирает прочность.

Чтобы поверхность бетона предохранить от высыхания, ее покрывают песком, опилками, периодически увлажняя их. Эффективна защита поверхности бетона от испарения влаги полимерными пленками, битумными и полимерными эмульсиями. В зимнее время твердеющий бетон предохраняют от замерзания различными методами: методом термоса, когда подогретую бетонную смесь защищают теплоизоляционными материалами, и подогревом бетона во время твердения (в том числе и электропрогрев).

На заводах сборного железобетона для ускорения твердения бетона применяют тепловлажностную обработку - прогрев при постоянном поддерживании влажности бетона насыщенным паром при температуре 85...90°С. При этом время твердения железобетонных изделий до набора ими отпускной прочности (70...80 % марочной) сокращается до 10... 16 ч (при твердении в естественных условиях для этого требуется 10...15 дн).

Для силикатных бетонов используют автоклавную обработку в среде насыщенного пара высокой температуры 175...200°С и при давлении 0,8...1,3 МПа. В этом случае процесс твердения длится 8...10 ч.

Для ускорения набора прочности бетоном применяют быстротвердеющие (БТЦ) и особо быстротвердеющие (ОБТЦ) цементы. Быстрее других достигает марочной прочности (за три дня) бетон на глиноземистом цементе, однако последний нельзя использовать при температуре окружающей среды вовремя твердения выше 30...35° С.

5. Прочность, марка и класс бетона

Тяжелый бетон — основной конструкционный строительный материал, поэтому оценке его прочностных свойств уделяется большое внимание. Прочностные характеристики бетона определяются строго в соответствии с требованиями стандартов. Используется несколько показателей, характеризующих прочность бетона. Неоднородность бетона как материала учитывается в основной прочностной характеристике — классе бетона.

Прочность. Как и у всех каменных материалов, предел прочности бетона при сжатии значительно (в 10... 15 раз) выше, чем при растяжении и изгибе. Поэтому в строительных конструкциях бетон, как правило, работает на сжатие. Когда говорят о прочности бетона, подразумевают его прочность на сжатие.

Прочность бетона принято оценивать по среднему арифметическому значению результатов испытания образцов данного бетона через 28 суток нормального твердения. Для этого используют образцы - кубы размером 150 х 150 х 150 мм, изготовленные из рабочей бетонной смеси и твердевшие при (20 ± 2)°С на воздухе при относительной влажности 95% (или в иных условиях, обеспечи-вающих сохранение влаги в бетоне). Методы определения прочности бетона регламентированы стандартом.

Марка бетона. По среднему арифметическому значению прочности бетона устанавливают его марку — округленное значение прочности (причем округление идет всегда в нижнюю сторону). Для тяжелого бетона установлены следующие марки по прочности на сжатие: 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 700 и 800 кгс/см2. При обозначении марки используют индекс «М»; так, например, марка бетона М35О означает, что его средняя прочность не менее 35 МПа (но не более 40).

Отличительная особенность бетона — значительная неоднородность его свойств. Это объясняется изменчивостью в качестве сырья (песка, крупного заполнителя и даже цемента), нарушением режима приготовления бетонной смеси, ее транспортировки, укладки (степени уплотнения) и условии твердения. Все это приводит к разбросу прочности бетона одного и того же состава. Чем выше культура производства (лучше качество подготовки материалов, приготовления и укладки бетона и т. п.), тем меньше будут возможные колебания прочности бетона. Для строителя важно получить бетон не только с заданной средней прочностью, но и с минимальными отклонениями (особенно в низшую сторону) от этой прочности. Показателем, который учитывает возможные колебания качества бетона, является класс бетона.

Класс бетона — это численная характеристика прочности, принимаемая с гарантированной обеспеченностью (обычно 0,95). Это значит, что установленное классом свойство, например прочность бетона, достигается не менее чем в 95 случаях из 100.

Понятие «класс бетона» позволяет назначать прочность бетона с учетом ее фактической или возможной вариации. Чем меньше изменчивость прочности, тем выше класс бетона при одной и той же средней прочности.

Соотношение между классами и марками бетона неоднозначно и зависит от однородности бетона, оцениваемой с помощью коэффициента вариации. Чем меньше коэффициент вариации, тем однороднее бетон.

6. Основные свойства тяжелого бетона

Помимо прочности к основным свойствам принять относить деформативность, морозостойкость и теплофизические свойства, которые во многом зависят от пористости и способности бетона поглощать воду в период эксплуатации.

К деформативным свойствам, как мы уже знаем, относят модуль упругости, модуль деформаций, модуль Пуассона и пр. Начальный модуль упругости зависит от пористости и прочности и составляет для тяжелых бетонов (2,2….3,5) . 104 МПа. У ячеистых бетонов – 1 . 104. Важными для бетонов являются деформации бетона, возникающие при усадке бетона и его ползучести

Ползучесть — склонность бетона к росту пластических деформаций при длительном действии статической нагрузки. Ползучесть бетона также связана с пластическими свойствами цементного геля и микро-трещинообразованием. Она носит затухающий во времени характер. Абсолютные значения ползучести зависят от многих факторов. Особенно активно ползучесть развивается, если бетон нагружается в раннем возрасте. Ползучесть можно оценивать двояко: как положительный процесс, помогающий снижать напряжения, возникающие от термических и усадочных процессов, и как отрицательное явление, например, снижающее эффект от предварительного напряжения арматуры.

Усадка — процесс сокращения размеров бетонных элементов при их нахождении в воздушно-сухих условиях. Основная причина усадки — сжатие гелевой составляющей при потере воды. Усадка бетона тем выше, чем больше объем цементного теста в бетоне. В среднем усадка тяжелого бетона составляет 0,3...0,4 мм/м.

Вследствие усадки бетона в бетонных и железобетонных конструкциях могут возникнуть большие усадочные напряжения, поэтому элементы большой протяженности разрезают усадочными швами во избежание появления трещин. При усадке бетона 0,3 мм/м в конструкции длиной 30 м общая усадка составит 10 мм. Усадочные трещины в бетоне на контакте с заполнителем и в самом цементном камне могут снизить морозостойкость и послужить очагами коррозии бетона.

Пористость. Как это ни покажется странным, такой плотный материал, как бетон имеет заметную пористость. Причина ее возникновения, как, это уже не раз говорилось, кроется в избыточном количестве воды затворения. Бетонная смесь после правильной укладки представляет собой плотное тело. При твердении часть воды химически связывается минералами цементного клинкера (для портландцемента около 0,2 от массы цемента), а оставшаяся часть постепенно испаряется, оставляя после себя поры. В этом случае пористость бетона можно определить по формуле

П = [(В - ?•Ц)/1000]100,

где В и Ц - расходы воды и цемента на 1м3 (1000дм3 );

? — количество химически связанной воды в долях от массы цемента.

Пример. В возрасте 28 суток цемент связывает 17 % воды от своей массы; расход воды в этом бетоне - 180 кг, а цемента — 320 кг. Тогда пористость этого бетона будет:

П = [(180 - 0,17•320)/1000]100 = 12,6 %.

Это общая пористость, включающая микропоры геля и капиллярные поры (объем вовлеченного воздуха мы не рассматриваем). С точки зрения влияния на проницаемость и морозостойкость бетона важно количество капиллярных пор. Относительный объем таких пор можно вычислить по формуле, %:

Пк = [(В-2?Ц)/1000]100.

Для нашего случая количество капиллярных пор будет — 7,1 %.

Водопоглощение и проницаемость. Благодаря капиллярно-пористому строению бетон может поглощать влагу как при контакте с ней, так и непосредственно из воздуха. Гигроскопическое влагопоглощение у тяжелого бетона незначительно, но у легких бетонов (а в особенности у ячеистых) может достигать соответственно 7...8 и 20...25 %.

Водопоглощение характеризует способность бетона впитывать влагу в капельно-жидком состоянии; оно зависит, главным образом, от характера пор. Водопоглощение, как мы уже знаем, тем больше, чем больше в бетоне капиллярных сообщающихся между собой пор. Максимальное водопоглощение тяжелых бетонов на плотных заполнителях достигает 4...8 % по массе (10...20 % по объему). У легких и ячеистых бетонов этот показатель значительно выше.

Большое водопоглощение отрицательно сказывается на морозостойкости бетона и его теплозащитных свойствах. Для уменьшения водопоглощения прибегают к гцдрофобизации бетона, а также к устройству паро- и гидроизоляции конструкций.

Водопроницаемость бетона определяется в основном проницаемостью цементного камня и контактной зоны «цементный камень — заполнитель»; кроме того, путями фильтрации жидкости через бетон могут быть микротрещины в цементном камне и дефекты сцепления арматуры с бетоном. Высокая водопроницаемость бетона может привести его к быстрому разрушению из-за коррозии цементного камня.

Для снижения водопроницаемости необходимо применять заполнители надлежащего качества (с чистой поверхностью), а также использовать специальные уплотняющие добавки (жидкое стекло, хлорное железо) или расширяющиеся цементы. Последние используются для устройства бетонной гидроизоляции.

По водонепроницаемости бетон делят на марки W0,2; W0,4; W0,6; W0,8 и Wl,2. Марка обозначает давление воды (МПА), при котором образец-цилиндр высотой 15 см не пропускает воду при стандартных испытаниях.

Морозостойкость — главный показатель, определяющий долговечность бетонных конструкций в нашем климате. Морозостойкость бетона оценивается путем попеременного замораживания при минус (18 ± 2)° С и оттаивания в воде при (18 ± 2)° С предварительно насыщенных водой образцов испытуемого бетона. Продолжительность одного цикла - 5... 10 ч в зависимости от размера образцов.

За марку по морозостойкости принимают наибольшее число циклов «замораживания - оттаивания», которое образцы выдерживают без снижения прочности на сжатие более 5% по сравнению с прочностью контрольных образцов в начале испытаний. Установлены следующие марки бетона по морозостойкости: F25; F35; F50; F75; F100...F1000. Стандартом разрешается применять ускоренные методы испытаний в растворе соли или глубоким замораживанием до минус (50 ± 5)° С.

Мы уже знаем, что причиной разрушения бетона в рассматриваемых условиях является капиллярная пористость. Вода по капиллярам попадает внутрь бетона и, замерзая там, постепенно разрушает его структуру. Установлена зависимость марки по морозостойкости бетона от величины капиллярной пористости. Так, согласно этой зависимости бетон, пористость которого мы рассчитывали выше, должен иметь морозостойкость F150...F200.

Для получения бетонов высокой морозостойкости необходимо добиваться минимальной капиллярной пористости (не выше 6,5...6 %). Это возможно путем снижения содержания воды в бетонной смеси, что, в свою очередь, возможно путем использования:

• жестких бетонных смесей, интенсивно-уплотняемых при укладке;

• пластифицирующих добавок, повышающих удобоукладываемость бетон-ных смесей без добавления воды. Есть еще один путь повышения морозостойкости бетона - гидрофобизация (объемная или поверхностная); в этом случае снижается водопоглощение бетона и соответственно повышается его морозостойкость.

Теплофизические свойства. Из них важнейшими являются теплопроводность, теплоемкость и температурные деформации.

Теплопроводность тяжелого бетона даже в воздушно-сухом состоянии велика — около 1,2... 1,5 Вт/(м • К), т. е. в 1,5...2 раза выше, чем у кирпича. Поэтому использовать тяжелый бетон в ограждающих конструкциях можно только совместно с эффективной теплоизоляцией. Легкие бетоны, в особенности ячеистые, имеют невысокую теплопроводность 0,1...0,5 Вт/(м • К), и их применение в ограждающих конструкциях предпочтительнее.

Теплоемкость тяжелого бетона, как и других каменных материалов, находится в пределах 0,75...0,92Дж/(кг • К); в среднем — 0,84 Дж/(кг • К).

Температурные деформации. Температурный коэффициент линейного расширения тяжелого бетона (10...12)•10-6К-1. Это значит, что при увеличении температуры бетона на 50°С расширение составит примерно 0,5 мм/м. Поэтому во избежание растрескивания сооружения большой протяженности разрезают температурными швами.

Большие колебания температуры могут вызвать внутреннее растрескивание бетона из-за различного теплового расширения крупного заполнителя и цементного камня.

7. Легкие бетоны

Существенный недостаток обычного тяжелого бетона — большая плотность (2400...2500 кг/м3). Снижая плотность бетона, строители достигают как минимум двух положительных результатов:

• снижается масса строительных конструкций;

• повышаются их теплоизоляционные свойства.

Легкие бетоны бетоны с плотностью менее 1800 кг/м3 - универсальный материал для ограждающих и несущих конструкций жилых и промышленных зданий. Из них изготовляют большинство стеновых панелей и блоков, плит кровельных покрытий и камней для укладки стен. Термин «легкие бетоны» объединяет большую группу различных по составу, структуре и свойствам бетонов.

По назначению легкие бетоны подразделяют на:

• конструкционные (класс прочности - В7,5...В35; плотность - 400...1800кг/м3);

• конструкционно-теплоизоляционные (класс прочности не менее ВЗ,0, плотность - 600... 1400 кг/м3);

• теплоизоляционные - особо легкие (плотность < 600 кг/м3).

По строению и способу получения пористой структуры легкие бетоны подразделяют на следующие виды:

•бетоны слитного строения на пористых заполнителях;

• ячеистые бетоны, в составе которых нет ни крупного, ни мелкого

заполнителя, а их роль выполняют мелкие сферические поры (ячейки);

• крупнопористые, в которых отсутствует мелкий заполнитель, в результате чего между частицами крупного заполнителя образуются пустоты.

Легкие бетоны на пористых заполнителях — наиболее распространенный вид легких бетонов. Свидетельства их применения известны еще в Древнем Риме. Для получения легких бетонов тогда использовали природный заполнитель — пемзу и туф, а также бой керамики и даже пустые глиняные сосуды. В настоящее время эти заполнители также используют как местный материал.

Широкое развитие легкие бетоны получили во второй половине XX в., когда началось массовое производство искусственных пористых заполнителей: керамзита, аглопорита, шлаковой пемзы и др.

Особенности технологии легких бетонов связаны со спецификой пористых заполнителей: их плотность меньше плотности воды, поверхность частиц шероховатая и они активно поглощают воду.

Низкая плотность не позволяет эффективно использовать традиционные бетоносмесители «свободного падения», в которых перемешивание интенсифицируется за счет падения тяжелых зерен заполнителя. Шероховатая поверхность также затрудняет перемешивание. Поэтому для приготовления легкобетонных смесей желательно использовать смесители принудительного перемешивания.

При вибрировании легких бетонов расслоение смеси имеет обратный характер в сравнении с тяжелым. Вверх всплывают легкие зерна заполнителя, а вниз опускается цементное тесто.

Твердение цемента в легких бетонах происходит в более благоприятных условиях, чем в тяжелом бетоне, так как заполнитель, поглотивший воду во время приготовления смеси, служит как бы аккумулятором воды, обеспечивающим влажное твердение бетона в длительные сроки.

Структура и свойства легких бетонов. Пористые заполнители имеют шероховатую поверхность, поэтому сцепление цементного камня с заполнителем не является слабым звеном легких бетонов. Этому способствует также химическая активность вещества заполнителей, содержащих аморфный SiO2, способный взаимодействовать с Са(ОН)2 цементного камня. Плотность и прочность контактной зоны «цементный камень — пористый заполнитель» объясняют парадоксально высокую водонепроницаемость и прочность легких бетонов на пористых заполнителях.

Морозостойкость легких бетонов при их пористой структуре довольно высокая. Рядовые легкие бетоны имеют морозостойкость в пределах F25...F100. Для специальных целей могут быть получены легкие бетоны с морозостойкостью F200, F300 и F400.

Водонепроницаемость у легких бетонов высокая и увеличивающаяся по мере твердения бетона за счет уплотнения контактной зоны «цементный камень — заполнитель», являющейся самым уязвимым местом для проникновения воды в обычном бетоне. Установлены следующие марки легких бетонов по водонепроницаемости: W0,2; W0,4; W0,6; W0,8; W1; W1,2 (давление воды, МПа, не вызывающее Фильтрации при стандартных испытаниях).

Ячеистые бетоны

Ячеистые бетоны на 60...85 % по объему состоят из замкнутых пор (ячеек) размером 0,2...2 мм. Ячеистые бетоны получают при затвердевании насыщенной газовыми пузырьками смеси вяжущего, кремнезимистого компонента и воды. Благодаря высокопористой структуре средняя плотность ячеистого бетона невелика - 300... 1200 кг/м3; он имеет низкую теплопроводность при достаточной прочности. Бетоны с желаемыми характеристиками (плотностью, прочностью и теплопроводностью) сравнительно легко можно получать, регулируя их пористость в процессе изготовления.

Состав и технология ячеистых бетонов. Вяжущим в ячеистых бетонах может служит портландцемент (или известь) с кремнеземистым компонентом. При применении известково-кремнеземистых вяжущих получаемые бетоны называют газо- и пеносиликаты.

Кремнеземистый компонент — молотый кварцевый песок, гранулированные доменные шлаки, зола ТЭС и др. Кремнеземистый компонент снижает расход вяжущего и уменьшает усадку бетона. Применение побочных продуктов промышленности (шлаков и зол) для этих целей экономически выгодно и экологически целесообразно.

Соотношение между кремнеземистым компонентом и вяжущим устанавливается опытным путем.

Для получения ячеистых бетонов используют как естественное твердение вяжущего, так и активизацию твердения с помощью пропа-ривания (t = 85...90°С) и автоклавной обработки (t = 175° С). Лучшее качество имеют бетоны, прошедшие автоклавную обработку. В случае применения извести в составе вяжущего автоклавная обработка обязательна.

По способу образования пористой структуры (методу вспучивания вяжущего) различают: газобетоны и газосиликаты; пенобетоны и пеносиликаты.

Газобетон и газосиликат получают, вспучивая тесто вяжущего газом, выделяющимся при химической реакции между веществом-газообразователем и вяжущим. Чаще всего газообразователем служит алюминиевая пудра, которая, реагируя с гидратом оксида кальция, выделяет водород

ЗСа(ОН)2 + 2А1 + 6Н2О ? ЗСаО • А12О3 • 6Н2О + H2 ?

Согласно уравнению химической реакции, 1 кг алюминиевой пудры выделит до 1,25 м3 водорода, т. е. для получения 1 м3 газобетона требуется 0,5...0,7 кг пудры.

Пенобетоны и пеносиликаты получают, смешивая тесто вяжущего с заранее приготовленной устойчивой технической пеной. Для образования пены используют пенообразователи, получаемые как модификацией побочных продуктов других производств (гидролизованная кровь, клееканифольный пенообразователь), так и синтезируемые специально (сульфанол и т. п.).

Cойства ячеистых бетонов определяются их пористостью, видом вяжущего и условиями твердения. Как уже говорилось, пористость ячеистых бетонов - 60...85%. Характер пор - замкнутый, но стенки пор состоят из затвердевшего цементного камня, который, как известно, пронизан порами, в том числе и капиллярными. Для движения воздуха поры в ячеистом бетоне замкнуты, а для проникновения воды — открыты. Поэтому водопоглощсние ячеистого бетона довольно высокое (табл. 12.4) и морозостойкость соответственно пониженная по сравнению с бетонами слитной структуры.

Гидрофильность цементного камня и большая пористость обусловливают высокую сорбционную влажность. Это сказывается на теплоизоляционных показателях ячеистого бетона (табл. 12.4). Поэтому при использовании ячеистого бетона в ограждающих конструкциях его наружную поверхность необходимо защищать от контакта с водой или гидрофобизировать.

Прочность ячеистых бетонов зависит от их средней плотности и находится в пределах 1,5... 15 МПа. Модуль упругости ячеистых бетонов ниже, чем у обычных бетонов, т. е. они более деформативны. Кроме того, у ячеистого бетона повышенная ползучесть.

Ячеистые бетоны и изделия из них обладают хорошими звукоизоляционными свойствами, они огнестойки и легко поддаются механической обработке (пилятся и сверлятся).

Наиболее рациональная область применения ячеистых бетонов — ограждающие конструкции (стены) жилых и промышленных зданий: несущие — для малоэтажных зданий и ненесущие — для многоэтажных, имеющих несущий каркас.

Крупнопористый бетон

Крупнопористый бетон получают при затвердевании бетонной смеси, состоящей из вяжущего (обычно портландцемента), крупного заполнителя и воды. Благодаря отсутствию песка и пониженному Расходу цемента (70... 150 кг/м3), используемого лишь для склеивания зерен крупного заполнителя, плотность крупнопористого бетона на 600...700 кг/м3 ниже, чем у аналогичного бетона слитного строения.

Крупнопористый бетон целесообразно изготовлять на основе пористых заполнителей (керамзитового гравия, шлаковой пемзы и др.) В этом случае средняя плотность бетона составляет 500...700 кг/м и плиты из такого бетона эффективны для тегшоизоляции стен и покрытий зданий.

8. Специальные виды бетонов

Специальные бетоны способны работать в экстремальных условиях или обладают свойствами, не характерными для обычных бетонов. Но при этом их технология и принципиальный состав остаются «бетонными».

Особо тяжелые бетоны используют для устройства конструкций, защищающих людей от рентгеновского и ?-излучения. Для этого в состав бетона вводят заполнители, содержащие железо, барий и другие тяжелые элементы, хорошо поглощающие жесткое ионизирующее излучение. В качестве заполнителей используют: железные руды (магнетит, лимонит), барит, металлическую дробь и т. п. Плотность таких бетонов достигает 4000...5000 кг/м3.

Гидратные бетоны предназначены для защиты от нейтронного излучения. Как известно из физики, потоки нейтронов лучше всего поглощают атомы легких элементов (водорода, лития, бора). Для этих целей чаще всего используют бетоны, содержащие большое количество химически связанной воды. Этого можно добиться, используя вяжущие, образующие при твердении эттрингит— ЗСаО • А12О3 • 3CaSO4 • 32Н2О, а также применяя заполнители, содержащие кристаллизационную воду, например, серпентин (змеевик) 3MgO • 2SiO2 • 2H2O.

Жаростойкие бетоны характеризуются способностью сохранять в определенных пределах физико-механические свойства при длительном воздействии высоких температур.

Для изготовления жаростойких бетонов в качестве вяжущих используют глиноземистый цемент, шлакопортландцемент и жидкое стекло. Заполнителями и тонкомолотыми наполнителями служат металлургические шлаки, бой керамических и огнеупорных изделий, базальт, андезит и т. п.

Жаростойкие бетоны приготовляют по обычной технологии, а затем в процессе работы при высоких температурах они сами превращаются в монолитный керамический материал. Из таких бетонов выполняют футеровку промышленных печей, фундаменты доменных и мартеновских печей и т. п. Применение жаростойких бетонов взамен штучных материалов снижает стоимость и ускоряет строительство.

Кислотоупорные бетоны получают на кислотоупорном цементе и кислотостойких заполнителях. Применяют кислотоупорные бетоны на химических предприятиях для облицовки несущих конструкций, устройства бетонных полов и т. п.

9.4. Железобетон и железобетонные изделия

1. Общие сведения

Бетон имеет недостаток, присущий всем каменным как природным, так и искусственным материалам,— он хорошо работает на сжатие, но плохо сопротивляется изгибу и растяжению. Прочность бетона при растяжении составляет всего около 1/10…1/15 его прочности на сжатие. Чтобы повысить прочность бетонных конструкций на растяжение и изгиб, в бетон укладывают стальную проволоку или стержни, называемой арматурой. Арматура в переводе с латинского означает «вооружение», т. е. стальная арматура как бы вооружает, укрепляет бетон. Армированный стальными стержнями бетон называют железобетоном. Каменные конструкции армированные металлом, были известны давно, но в современном виде железобетон появился лишь во второй половине XIX века, когда было освоено промышленное производство портландцемента. Патент на изобретение железобетона был выдан французу Ж. Монье в 1867г., хотя известны попытки использования железобетона и до него (например, в 1849г. инженером Г.Е. Паукером в России и в 1845г. В. Уилкинсоном в Англии). Первоначаль

но железобетон применялся довольно ограниченно. В настоящее время это основной конструкционный материал в жилищном и промышленном строительстве.

Железобетон — это не два разнородных материала: бетон и сталь, а новый материал, в котором сталь и бетон работают совместно, помогая друг другу. Это объясняется следующим. Бетон при твердении на воздухе уменьшается в объеме, плотно охватывая арматуру. Прочность сцепления арматуры с бетоном достигает больших значений. Так, чтобы выдернуть из бетона стержень диаметром 30 мм, введенный в бетон на глубину 300 мм, требуется сила не менее 10 кН. Сцепление стали с бетоном не нарушается и при сильных перепадах температуры, так как коэффициенты теплового расширения стали и бетона почти одинаковы. Хорошее сцепление стали с бетоном приводит к тому, что под нагрузкой эти два материала работают как одно целое.

Смысл армирования можно пояснить на элементах, работающих на изгиб (балках, ригелях). В таких элементах часть поперечного сечения элемента подвергается сжатию, а другая — растяжению. Если балку изготовить из неармированного бетона, то вследствие низкой его прочности на растяжение (1...4 МПа) уже под небольшой нагрузкой бетон в растянутой зоне растрескивается и балка разрушится. Если же в растянутую зону ввести стальную арматуру, то она примет на себя растягивающие напряжения (прочность стали при растяжении более 200 МПа), и балка, хотя на ней могут появиться трещины, не разрушится даже при больших нагрузках. В ряде случаев армируют элементы, работающие и на сжатие (колонны, сваи), так как и на сжатие сталь в 5... 10 раз прочнее бетона.

Причиной, почему арматура принимает на себя большую часть нагрузки, является различие в модулях упругости стали 2 • 105 МПа и бетона (2...3) х 104 МПа. Из-за того, что модуль упругости стали в 10 раз выше модуля упругости бетона, при нагружении железобетонного элемента напряжения, возникающие в стали, приблизительно в 10 раз выше, чем напряжения в бетоне, т. е. в материале происходит как бы перераспределение нагрузки.

Бетон благодаря своей плотности и водонепроницаемости, с одной стороны, и щелочной реакции цементного камня в бетоне, с другой, защищает сталь от коррозии. Кроме того, бетон как сравнительно плохой проводник теплоты защищает сталь от быстрого нагрева при пожарах. Стальные конструкции при пожаре быстро нагреваются, сталь размягчается и вся конструкция начинает деформироваться даже под собственным весом. В железобетонных конструкциях стальная арматура защищена от огня слоем бетона. Так, опыты показали, что при температуре поверхности бетона 1000°С арматура, находящаяся на глубине 50мм, через 2 ч нагреется лишь до 500°С.

В современном строительстве все большее применение находит напряженно-армированный бетон. Как уже говорилось, прочность бетона на растяжение в 10...20 раз ниже, чем на сжатие. В железобетоне этот недостаток устраняют введением в растянутую зону арматуры. Однако вследствие малой растяжимости бетона в растянутой его зоне возникают трещины, после чего всю нагрузку воспринимает только арматура. Пока ширина трещины менее 0,1...0,2 мм (так называемые волосяные трещины), они не опасны с точки зрения сцепления арматуры с бетоном и коррозии арматуры.

При применении для армирования высокопрочных сталей полное использование их прочности сопровождается относительно большим удлинением арматуры, что приводит к сильному растрескиванию бетона, а это, в свою очередь,— к коррозии арматуры из-за обнажения ее поверхности. Отсюда следует, что при обычном способе армирования применение высокопрочной арматуры нерационально. При армировании такой арматурой применяют метод предварительного натяжения арматуры.

Сущность этого метода состоит в том, что до загрузки железобетонной конструкции полезной нагрузкой ее арматуру растягивают наподобие резинового жгута; упором при этом служит бетон. Естественно, что чем сильнее растянута арматура, тем больше будет сжат бетон. Когда же к конструкции приложена полезная нагрузка, напряжения от нее, возникающие в растянутой зоне бетона, частично компенсируются предварительно созданными сжимающими напряжениями. Поэтому в растянутой зоне бетона не возникнут трещины, а предварительно напряженная арматура получит от нагрузки дополнительное напряжение и ее высокая прочность будет реализована в большой степени.

В настоящее время применяют два способа получения напряженно-армированного бетона. Один из них заключается в том, что арматуру натягивают и закрепляют на специальных анкерах, а затем укладывают бетон. После того как бетон достаточно затвердеет, арматуру освобождают и она, сжимаясь, сжимает бетон. Другой способ: в бетоне оставляют специальные каналы для напрягаемой арматуры. После затвердевания бетона арматуру вводят в каналы и натягивают, используя в качестве опоры затвердевший бетон. При этом в бетоне возникают сжимающие напряжения. После натяжения арматуры каналы заполняют цементным раствором.

В предварительно напряженных железобетонных конструкциях более полно используется прочность стали и бетона, поэтому уменьшается масса изделий. Кроме того, предварительное обжатие бетона, препятствуя образованию трещин, повышает его долговечность.

Благодаря универсальности и комплексу ценных свойств железобетон на тяжелом и легком бетоне используют для строительства всех типов зданий и инженерных сооружений. Так, массовое строительство жилых зданий осуществляется из сборного железобетона, причем из него выполняют все элементы здания. В многоэтажных кирпичных зданиях фундаменты и перекрытия — железобетонные. Промышленные здания и инженерные сооружения в основном возводят из железобетона.

В зависимости от способа изготовления железобетонные конструкции могут быть монолитными или сборными.

2. Монолитный железобетон

Монолитным называют железобетон, изготовляемый непосредственно на строительной площадке. На месте возведения конструкции устанавливают опалубку. Назначение опалубки — придать бетонной смеси при ее укладке форму будущей конструкции. Опалубку выполняют из дерева, фанеры, стали или различных их комбинаций. Обычно применяют разборно-переставную опалубку из мелких или крупных щитов.

Для возведения высоких сооружений (резервуаров, труб, башен) применяют скользящую или подъемно-переставную опалубку. Когда бетон, уложенный в скользящую опалубку, достаточно затвердеет, опалубку вместе с рабочими подмостями двигают вверх и цикл повторяют. Такая опалубка была использована при строительстве Останкинской телевизионной башни.

В опалубку укладывают арматуру, а затем бетонную смесь. Бетонную смесь уплотняют глубинными или поверхностными вибраторами, навешиваемыми на опалубку.

Бетон после укладки первые 7... 10 дн необходимо защищать от высыхания, а зимой — от замерзания. В противном случае мы не получим требуемой прочности бетона. Бетон твердеет обычно естественным путем, зимой возможен его подогрев.

Опалубку снимают по достижении бетоном достаточной прочности, чаще всего через 7...10 дн.

В последние годы монолитный железобетон применяют все шире (в начальный период своего развития железобетон в строительстве использовали только в монолитном варианте). Из монолитного бетона возводят здания и сооружения, не поддающиеся разделению на однотипные элементы, при особенно больших или динамических нагрузках на конструкции зданий и сооружений (например, фундаменты и каркасы многоэтажных жилых и промышленных зданий, особенно в сейсмических районах), гидротехнические сооружения и т. п. С каждым годом расширяется строительство из монолитного бетона городских и сельских жилых зданий. Особенно эффективно такое строительство в случае применения специально изготовленной металлической опалубки многократного использования, что позволяет добиться большой точности изготовления строительных конструкций при низких трудозатратах.

Для монолитного строительства используют тяжелые и легкие бетоны на быстротвердеющих цементах. При правильной организации труда скорость строительства из монолитного бетона не уступает скорости монтажа из сборных элементов.

За последние годы в городах России построено много нестандартных сооружений из монолитного бетона, в том числе и такие уникальные, как храм Христа Спасителя, подземный торговый комплекс на Манежной площади в Москве и др.

3. Сборный железобетон

Сборные железобетонные изделия и конструкции (сборный железобетон) представляют собой крупноразмерные железобетонные элементы, изготовляемые на заводе или полигоне домостроительного комбината. Основное преимущество таких конструкций — высокомеханизированные и автоматизированные методы их изготовления; на строительной площадке эти элементы только монтируют, что резко сокращает сроки строительства, повышает производительность труда и позволяет широко применять новые эффективные материалы (легкие и ячеистые бетоны, отделочную керамику, пластмассы и т. п.).

Развитие сборного строительства нашло свое выражение в организации домостроительных комбинатов (ДСК). ДСК выпускают все необходимые для строительства здания железобетонные элементы, транспортируют их на стройку и осуществляют монтаж и окончательную отделку здания. Главнейшее звено ДСК — заводы, выпускающие железобетонные конструкции и детали.

Основные операции при производстве железобетонных изделий: приготовление бетонной смеси, изготовление арматуры, армирование и формование изделий и их ускоренное твердение.

Бетонную смесь приготовляют в бетоносмесительном цехе завода, арматуру — в арматурном цехе. Поступающую на завод арматурную сталь (в бухтах или прутках) на специальных станках очищают от ржавчины, правят и режут на стержни заданной длины. Необходимую форму стержням придают на гибочных станках. Отдельные стержни и проволоку соединяют в сетки и каркасы контактной сваркой на станках-автоматах. Готовые сетки и каркасы передают в формовочный цех.

Напрягаемую арматуру натягивают на анкеры форм с помощью специальных механизмов или реже методом термического натяжения.

Перед укладкой арматуры и бетона формы очищают и покрывают смазочным материалом, препятствующим сцеплению бетона с металлом форм. Бетонная смесь из бетоносмесигельного цеха поступает в приемный бункер бетоноукладчика, который подает ее в форму и разравнивает.

Уплотняют бетонную смесь на заводах центрифугированием, вибропрессованием, прокатом, но чаще на виброплощадках большой грузоподъемности (до 5...10 т) с электромеханическим или электромагнитным приводом. Пустоты в изделиях формуют с помощью вибровкладышей.

Для ускорения твердения бетона его подвергают тепловлажностной обработке: нагреву до температуры 80... 180° С таким образом, чтобы в бетоне сохранялась вода в жидком состоянии, необходимая для твердения цемента.

Применяют следующие виды тепловлажностной обработки: пропаривание при нормальном давлении и температуре 80...95°С; контактный нагрев и электроподогрев до 100° С; запаривание в автоклавах при давлении 0,9... 1,6 МПа (оно необходимо, чтобы вода в бетоне оставалась жидкой) и температуре 175...200° С.

Наиболее распространено пропаривание при нормальном давлении в камерах непрерывного или периодического действия. Изделия нагревают насыщенным паром.

Камеры непрерывного действия представляют собой туннель, в котором изделия в формах, установленных на вагонетках, проходят последовательно зоны подогрева, изотермичесокй выдержки и охлаждения.

В камеры периодического действия изделия загружают краном и устанавливают в несколько рядов по высоте. Затем камеру закрывают крышкой и подают насыщенный пар. Продолжительность пропаривания 10... 16 ч. За это время бетон набирает не менее 70 % марочной прочности.

После извлечения из форм изделия проходят технический контроль на соответствие требованиям ГОСТ или ТУ.

Изделия, удовлетворяющие требованиям стандарта, маркируют несмываемой краской. В маркировке указывают паспортный номер изделия, его индекс, марку завода-изготовителя и пр. На каждую партию изделий составляют паспорт в двух экземплярах: для потребителя и завода-изготовителя.

Железобетонные изделия изготовляют способами: стендовым, кассетным, поточно-агрегатным, конвейерным и вибропрокатным.

При стендовом способе изделия получают в неподвижных формах (на стенде). Механизмы (бетоноукладчики, вибраторы и др.) поочередно подходят к стенду для выполнения необходимых операций. Этим способом изготовляют, как правило, крупногабаритные изделия (фермы, колонны, балки) на полигонах.

Касетный способ — вариант стендового способа, основой которого является формование изделий в стационарно установленных кассетах, состоящих из нескольких вертикальных металлических форм-отсеков. В форму закладывают арматурный каркас и заполняют ее бетонной смесью. Тепловую обработку производят контактным обогревом через стенки форм. После тепловой обработки стенки форм раздвигают и изделия вынимают мостовым краном. Кассетным способом изготовляют плоские изделия (панели перекрытий, стеновые панели и т. п.).

При поточно-агрегатном способе формы с изделиями перемешаются от одного технологического агрегата к другому краном, а при конвейерном они стоят на вагонетках, движущихся по рельсовому пути. При конвейерном способе тепловлажностную обработку осуществляют непрерывном методом. Конвейерный способ - высокопроизводительный, но на каждой нитке конвейера можно выпускать изделие только одного типоразмера.

При вибропрокатном способе процессы получения железобетонного изделия происходят на одной установке непрерывного действия — вибропрокатном стане. Вибропрокатный стан — это конвейер из стальной обрезиненной формующей ленты, движущейся вдоль постов укладки арматуры и бетона, виброуплотнения бетона и контактной тепловой обработки. Вибропрокатным способом получают плиты перекрытий, легкобетонные панели наружных стен, перегородочные панели. Этот способ самый производительный, но переход с выпуска одного вида изделий на другой затруднен, так как связан с полной переоснасткой стана.

9.5. Искусственные каменные материалы на основе вяжущих веществ

1. Общие сведения

Эта часть лекций посвящена мелко штучным искусственным каменным материалам.

В зависимости от вида вяжущего различают изделия на основе цемента, извести, гипса и др. Вид вяжущего и принятый способ производства определяют условия твердения таких материалов: естественное твердение, пропаривание, автоклавная обработка.

В качестве заполнителей для получения искусственных каменных изделий используют разнообразные материалы, обычный песок, керамзит и другие пористые заполнители, опилки и стружки и специфический армирующий заполнитель — асбест.

К основным искусственным каменным материалам и изделиям относятся: силикатный кирпич и силикатобетонные изделия; гипсобетонные изделия, стеновые камни из легкого и ячеистого бетона, арболит, цементно-стружечные плиты и асбестоцементные изделия.

В отличие от керамики материалы на минеральных вяжущих получаются за счет естественного твердения или термообработки при температурах до 200° С (керамический кирпич обжигают при 900... 1100° С). Таким образом, энергозатраты на производство изделий на минеральных вяжущих, даже с учетом энергозатрат на получение самого вяжущего, меньше, чем для получения керамики. Однако керамические материалы, как правило, более долговечны и стойки к действию воды, агрессивных растворов и высоких температур.

2. Силикатный кирпич и силикатобетонные изделия

Известно, что известь относится к воздушным вяжущим веществам, а известково-песчаные растворы являются малопрочными и неводостойкими материалами. Естественно предположить, что известково-песчаный раствор при определенных условиях должен твердеть с образованием гидросиликатов, так как в нем есть все необходимые для этого компоненты: известь Са(ОН)2, песок SiO2 и вода Н2О.

Первым, кто получил достаточно водостойкий и прочный материал на основе извести и песка, был немецкий ученый В. Михаэлис, который в 1880 г. предложил обрабатывать известково-песчаную смесь в атмосфере насыщенного пара при температуре 150...200° С.

Известно, что для получения насыщенного пара температурой выше 100°С необходимо давление выше атмосферного, причем оно должно быть тем выше, чем выше температура насыщенного пара. При температуре 150...200°С и соответствующем ей давлении 0,9... 1,3 МПа известь, песок и вода образуют гидросиликаты кальция:

Открытие Михаэлиса было использовано для производства так называемого силикатного (известково-песчаного) кирпича. К началу XX в. в России было уже пять заводов, выпускавших силикатный кирпич, а в настоящее время силикатный кирпич занял такое же место в ряду строительных материалов, как и керамический.

Современное производство силикатного кирпича заключается в следующем. Сырьевую смесь, в состав которой входит 90...95 % песка, 5... 10 % молотой негашеной извести и некоторое количество воды, тщательно перемешивают и вьщерживают до полного гашения извести. Затем из этой смеси под большим давлением (15...20 МПа) прессуют кирпич, который укладывают на вагонетки и направляют для твердения в автоклавы - толстостенные стальные цилиндры диаметром до 2м и длиной до 20м с герметически закрывающимися крышками. В автоклаве в атмосфере насыщенного пара при давлении 0,9 МПа и температуре 175°С кирпич твердеет 8... 14 ч. Из автоклава выгружают почти готовый кирпич, который выдерживают 10... 15 дн для карбонизации не-прореагировавшей извести углекислым газом воздуха, в результате чего повышаются водостойкость и прочность кирпича. Плотность обыкновенного силикатного кирпича несколько выше, чем полнотелого керамического. Снижение плотности кирпича и камней достигается формованием в них пустот или введением в сырье

вую массу пористых заполнителей.

Силикатный кирпич, так же, как и керамический, в зависимости от размеров может быть:

одинарный (полнотелый или с пористыми заполнителями) 250х120х65 мм;

утолщенный (пустотелый или с пористыми заполнителями) 250х120х88 мм (масса утолщенного кирпича не должна быть более 4,3 кг);

силикатный камень (пустотелый) 250х120х138 мм.

Цвет кирпича - от молочно-белого до светло-серого. Выпускают также лицевой кирпич с повышенными физико-механическими свойствами; он может быть цветным - окрашенным в массе или по лицевым граням щелочестойкими пигментами в голубой, зеленоватый, желтый и другие светлые тона.

В зависимости от предела прочности при сжатии и изгибе силикатный кирпич и камни подразделяют ка семь марок: 300; 250; 200; 150; 125; 100 и 75, имеющих средние значения прочности при сжатии соответственно не менее 30...7,5 МПа. Водопоглощение силикатного кирпича не менее 6%. Марки по морозостойкости у кирпича и камней — F50; 35; 25 и 15; для лицевых изделий морозостойкость должна быть не ниже 25.

Существенным недостатком силикатного кирпича по сравнению с керамическим является пониженная водостойкость и жаростойкость.

Силикатный кирпич применяют для кладки наружных и внутренних стен надземных частей зданий и сооружений. Использовать его в конструкциях, подвергающихся воздействию воды (фундаменты, канализационные колодцы и т. п.) и высоких температур (печи, дымовые трубы и т. п.), запрещается.

Кроме известково-песчаного силикатного кирпича выпускают известково-шлаковый и известково-зольный, в которых вместо песка частично или полностью используют промышленные отходы: золы теплоэлектростанций и шлаки. Свойства этих видов кирпича аналогичны свойствам известково-песчаного.

Силикатобетонные изделия бывают тяжелые (аналогичные обычному бетону) и легкие (на основе пористых заполнителей) или ячеистые (пено- и газосиликаты).

3. Гипсовые и гипсобетонные изделия

Изделия на основе гипса получают как из гипсового теста (т. е. из смеси гипса и воды), так и из смеси гипса, воды и заполнителей. В первом случае изделия называют гипсовыми, а во втором — гипсобетонными. Иногда вместо гипса применяют более водостойкое гипсоцементно-пуццолановое вяжущее.

В качестве заполнителей при изготовлении гипсобетонных изделий используют пористые заполнители (керамзит, шлаковую пемзу), опилки, стружки, стебли камыша, льняную костру, макулатуру и т. п. Для уменьшения плотности к гипсовым смесям добавляют вспенивающие вещества.

Гипс — воздушное вяжущее, поэтому гипсовые и гипсобетонные изделия (панели и плиты перегородочные, плиты для оснований пола, листы обшивочные, вентиляционные короба, камни для кладки стен, архитектурные детали) применяют в основном для внутренних частей зданий, не несущих больших нагрузок. Изделия из гипса могут быть сплошными и пустотелыми, армированными и неармированными.

У гипсовых изделий невысокая плотность (1100... 1400 кг/м3); они несгораемы, хорошо изолируют от шума, поддаются механической обработке и легко пробиваются гвоздями. Изготовлять гипсовые изделия несложно, так как гипс твердеет быстро.

Наряду с перечисленными положительными свойствами у гипсовых изделий есть и существенные недостатки: низкая водостойкость, гигроскопичность, хрупкость и малая прочность при изгибе. Изделия из гипса нельзя применять в помещениях с влажностью воздуха более 65 %. Для повышения водостойкости гипсовые изделия покрывают водонепроницаемыми красками. Чтобы увеличить прочность при изгибе, гипсовые изделия армируют, применяя для этой цели деревянные рейки, стебли камыша, органические волокна.

Гипсобетонные панели для перегородок применяют во всех типах жилых, общественных и промышленных зданий. Панели размером на комнату (высотой до 4 м, длиной до 6,6 м) могут быть как сплошные, так и с проемами для дверей и фрамуг. Толщина панелей 60, 80 и 100 мм. Класс гипсобетона по прочности для панелей — не менее В3,5.

Гипсобетонные панели для помещений с повышенной влажностью, например, санитарно-технических кабин, изготовляют на гипсоцементo-пуццолановом вяжущем или гидрофобизированном гипсе. Класс бетона не менее В3,5. К. гипсобетонным панелям предъявляются в основном требования по прочности и звукоизоляции. Этим требованиям отвечает гипсобетон состава 1:1: 1 (гипс : песок: опилки) плотностью 1100... 1400 кг/м3. Получают панели в основном методом непрерывного проката или вертикального формования в кассетах. Панели армируют каркасом из деревянных реек, а по контуру панели выполняют обвязку из деревянных брусков. Весь цикл производства составляет 30...60 мин.

Гипсовые плиты для перегородок изготовляют из гипса марок Г4 и Г5 по литьевой технологии. Плиты выпускают размерами: длина 670...800 мм, ширина 400...500 мм и толщина 80... 100 мм. Большей частью плиты имеют паз и гребень, что облегчает монтаж перегородок. Плотность гипсового камня около 1000 кг/м3. Масса 1 м2 перегородки 80... 100 кг. Прочность при сжатии не менее 5 МПа.

Выпускают два вида плит: обыкновенные и влагостойкие. Последние изготовляют, вводя в гипс гидрофобные добавки. Водопоглощение по массе обычных плит < 35 %, влагостойких — < 5 %.

Возможно изготовление плит большего размера, армируемых деревянными рейками, камышом или растительными волокнами.

Размер перегородок из гипсовых плит: высота не более 3,6 м, длина не более 6 м. При больших размерах требуется установка разделительных укрепляющих элементов из металла или бетона, надежно соединенных с несущими конструкциями.

Гипсовые вентиляционные блоки делают высотой «на этаж»; толщина блока 180...200 мм при диаметре вентиляционных каналов 140 мм, ширина зависит от числа вентиляционных каналов. Класс гипсобетона для вентиляционных блоков не менее В5.

Гипсокартонные листы — листовой отделочный материал, представляющий собой тонкий слой (6...20 мм) затвердевшего гипсового вяжущего, облицованного со всех сторон (кроме торцовых) картоном. В гипсовое тесто в процессе производства вводят пенообразующие добавки для снижения плотности и органические волокна с целью армирования гипсового камня и другие добавки. Изготовляют гипсокартонные листы методом непрерывного проката, причем твердеющий гипс прочно приклеивает к себе листы картона. Назначение картона — повысить прочность материала на изгиб и придать ему гладкую поверхность.

Гипсокартонные листы выпускают дайной 2,5...4,8 м, шириной 0,6... 1,2 м, толщиной 8...25 мм5 плотностью 850...950 кг/м3.

Кроме гипсокартонных листов выпускают гипсоволокнистые листы, в которых в качестве армирующего компонента используют целлюлозные волокна, получаемые из картонной и бумажной макулатуры, и др. Такие листы используют для устройства сборных стяжек при настилке полов.

Гипсовые листовые материалы относятся к трудносгораемым материалам. Их применяют для отделки стен и потолков и устройства перегородок в помещениях с нормальным влажностным режимом. Существенное достоинство листовых материалов — большие размеры, что ускоряет процесс отделки и устройства перегородок. Крепят листы клеящими мастиками или с помощью металлических профилей; крепить гвоздями не рекомендуется из-за возможности коррозии металла в гипсе.

4. Бетонные камни и мелкие блоки

На основе вяжущих изготовляют бетонные камни и мелкие блоки. Применение их для кладки стен вместо кирпича дает существенный экономический эффект, так как благодаря большому размеру камней и блоков достигается высокая производительность труда каменщика, а стоимость 1 м3 камней и блоков ниже стоимости такого же количества кирпича.

Бетонные стеновые камни для несущих и ограждающих конструкций всех типов зданий изготовляют размерами от 288х138х138 до 390 х 190 х 188 мм, массой не более 32 кг, из тяжелых и легких бетонов на цементном, силикатном и гипсовом вяжущих. Применяют их для кладки наружных стен (рядовые и лицевые) и фундаментов. Стеновые камни при плотности бетона более 1600 кг/м3 должны быть пустотелыми. Для фундаментов камни изготовляют только из тяжелого бетона без пустот. Лицевые камни могут быть окрашены рельефным рисунком или покрыты декоративным заполнителем. Камни подразделяют на семь марок: от 25 до 200. Камни марок 25 и 35 получают из легких бетонов на пористых заполнителях. Марки камней по морозостойкости: F15, 25, 35 и 50.

Мелкие стеновые блоки из ячеистого бетона применяют для кладки наружных и внутренних стен малоэтажных зданий и заполнения каркаса многоэтажных зданий. Блоки рекомендуются для применения в помещениях с относительной влажностью не более 75 %. Для стен подвалов, цоколей и других частей зданий, где возможно сильное увлажнение бетона, такие блоки применять запрещается. Изготовляют их из ячеистых бетонов.

В зависимости от средней плотности ячеистого бетона (кг/м3) блоки выпускают восьми марок от D500 до D1200. Класс бетона по прочности при сжатии (МПа) соответственно от В1,5 до В12,5. Морозостойкость блоков для наружных стен должна быть не ниже F25, а блоков для внутренних стен — F15.

Стандартом предусмотрено 10 типоразмеров блоков от 300 х 250 х 300 мм до 300 х 200 х 600 мм (размеры номинальные). Блоки выпускают для кладки на растворе или на клею (второй вариант более эффективен с точки зрения обеспечения теплоизоляционных показателей стены). Различие этих двух типов блоков заключается в размерах (при кладке на клею значительно меньше толщина шва) и в точности соблюдения размеров и геометрии блоков. Так, допустимые искривления граней и ребер у блоков для кладки на растворе — 5 мм, а у блоков для кладки на клею — 1 мм.

Большое преимущество блоков из ячеистого бетона — низкая плотность (обычно 500…600 кг/м ), благодаря чему из них можно возводить стены толщиной 30…40 см, отвечающие нормативам СНиП по термическому сопротивлению, без специальной теплоизоляции.

5. Асбестоцемент и асбестоцементные материалы

Бетонные и железобетонные изделия — массивные элементы толщиной, как минимум, в несколько сантиметров. Получить легкие тонкостенные изделия из бетона на цементе с обычной прутковой или проволочной арматурой невозможно. Эту проблему можно решить, равномерно распределяя в мелкозернистой смеси на основе портландцемента (или другого вяжущего) тонкие армирующие волокна (отрезки стальной проволоки, асбестовое волокно, стекловолокно и др.). Из таких композиционных материалов, называемых фибробетоном, изготовляют большеразмерные листы, трубы и фасонные изделия толщиной всего несколько миллиметров. Самый распространенный и эффективный материал такого рода - асбестоцемент, получаемый на основе распушенного асбеста.

Асбест (от греч. asbestos — неразрушаемый) — собирательное название группы тонковолокнистых минералов, образующихся в земной коре при воздействии геотермальных вод на ультраосновные магматические породы. Особенностью асбеста является способность его минеральных агрегатов разделяться (распушаться) на тончайшие (диаметром в доли микрона) мягкие волоконца. Благодаря этому свойству асбест получил название «горный лен».

Асбест обладает высокой адсорбционной способностью; особенно активно он адсорбирует ионы Са+, поэтому его волокна хорошо сцепляются с цементным вяжущим.

Асбест, помимо высокой прочности, обладает уникальным сочетанием ценных свойств:

• низкой теплопроводностью [0,35...0,41 Вт/(м • К) в нераспушен-

ном виде];

• устойчивостью к повышенным температурам (нагрев до 400...500оС

не вызывает в асбесте необратимых изменений);

• высоким коэффициентом трения (например, по стали — 0,8).

Из асбестового волокна изготовляют ткани, картон, бумагу, шнуры, которые благодаря огнестойкости асбеста используют для высокотемпературной тепловой изоляции. Из смеси асбеста с синтетическими смолами получают асбестотехнические изделия для автотракторной (тормозные колодки и т. п.) и электротехнической (электроизоляционные материалы) промышленности.

Медики считают, что хризотил-асбест при соблюдении правил работы с ним не представляет опасности для здоровья человека. В асбестоцементных материалах асбест заключен в цементной матрице, что исключает контакт человека с ним и делает его безвредными во всех случаях применения.

Асбестоцемент — искусственный каменный материал, получаемый при затвердевании смеси портландцемента, асбеста (15...20 % от массы цемента) и воды. Асбест хорошо сцепляется с твердеющим цементом, и благодаря высокой прочности при растяжении асбестовое волокно армирует материал по всему объему.

Асбестоцементные изделия в основном производят путем отливки жидко-вязкой массы на частую металлическую сетку с последующим обезвоживанием и формованием. Таким образом получают плоские и волнистые листы и трубы.

Используется и другой способ формования асбестоцементных изделий — экструзия — выдавливание пластичной массы, как при производстве кирпича (см. § 5.3). Таким образом получают погонажные изделия: подоконные плиты, швеллеры, пустотелые плиты и панели.

Асбестоцемент при сравнительно небольшой плотности (1600...2000 кг/м3) обладает высокими прочностными показателями (предел прочности при изгибе до 30 МПа, а при сжатии до 90 МПа). Он долговечен, морозостоек (через 50 циклов замораживания-оттаивания теряет не более 10 % прочности) и практически водонепроницаем.

Недостатки асбестоцемента: хрупкость (асбестоцемент не выдерживает сильных ударных нагрузок), набухание и усадка при изменении влажности асбестоцемента, сопровождающиеся короблением.

Волнистые кровельные листы («шифер») — основной вид листовых асбестоцементных изделий. Шифер широко используют в качестве кровельного материала (его доля в общем объеме производства кровельных материалов — около 50 %). Кровельные листы выпускают 6 типоразмеров: длиной 1,2...2,5 м; шириной 0,69...1,15 м; толщиной 5.5...7,5 мм.

Кроме обычных выпускают листы, окрашенные атмосферостойкими красками как в массе, так и с поверхности. В последнее время начался выпуск плоских с фигурной кромкой листов, имитирующих мелкоштучную черепицу. Долговечность асбестоцементных изделий – более 50 лет.

«Утверждаю»

Заведующий кафедрой

«Строительные материалы»

Д.т.н., проф. Коренькова С.Ф

________________________

«__» декабря 2005 г.

ЭКЗАМЕНАЦИОННЫЕ БИЛЕТЫ ПО ДИСЦИПЛИНЕ «СТОИТЕЛЬНОЕ МАТЕРИАЛОВЕДЕНИЕ»

БИЛЕТ № 1

1. Электронное строение атома. Главное, орбитальное, магнитное и спиновое квантовые числа. Числовое и буквенное обозначения.

2. Свойства строительных материалов. Основные понятия и определения.

3. Виды керамических изделий, применяемых в строительстве. Свойства.

БИЛЕТ № 2

1. Энергия ионизации. Определение. Зависимость энергии ионизации от атомного номера.

2. Взаимосвязь свойств строительных материалов. Примеры.

3. Сырьевые материалы для керамики и основные технологические принципы получения керамических изделий.

БИЛЕТ № 3

1. Сродство к электрону. Определение. Зависимость от атомного номера.

2. Плотность. Зависимость плотности от вида и величины химических связей, микро и макроструктуры. Примеры.

3. Стекло. Свойства стекла. Изделия из стекла.

БИЛЕТ № 4

1. Электоотрицательность. Определение. Зависимость от атомного номера.

2. Влияние химического и агрегатного состояния на плотность материала.

3. Основы технологии получения стекла и изделий из него. Листовое стекло.

БИЛЕТ № 5

1. Ковалентная химическая связь, Примеры. Величина энергии ковалентной связи.

2. Теплоемкость. Определение. Для каких целей применяют значения теплоемкости?

3. Ситаллы и шлакоситаллы. Каменное литье.

БИЛЕТ № 6

1. Ионная связь. Примеры. Величина энергии ионной связи.

2. Влияние температуры, химического состава и агрегатного состава на теплоемкость.

3. Неорганические вяжущие вещества. Определение. Виды неорганических вяжущих веществ. Глина как вяжущее вещество.

БИЛЕТ № 7

1. Металлическая связь. Примеры. Величина энергии металлической связи.

2. Тепловое расширение материалов. Механизм теплового расширения.

3. Гипсовые вяжущие вещества. Сырье. Основы технологии. Свойства.

БИЛЕТ № 8

1. Межмолекулярное (Ван-дер-ваальсовое) взаимодействие. Определение. Энергия связи. Примеры.

2. Влияния типа и силы химических связей на тепловое расширение. Пример.

3. Магнезиальное вяжущее и воздушная известь. Сырье. Основы технологии. Свойства.

БИЛЕТ № 9

1. Структура и текстура материалов. Макро и микроструктура материалов. Термины, определения. Примеры.

2. Теплопроводность. Определение. Влияние агрегатного состояния на теплопроводность веществ. Способы передачи тепла в газах, жидкостях и твердых телах.

3. Гидравлические известьсодержащие вяжущие. Сырье. Основы технологии. Свойства.

БИЛЕТ № 10

1. Микроструктура. Внутреннее строение материалов: кристаллическое, аморфное, аморфно-кристаллическое. Определение. Примеры.

2. Влияние химического состава и структуры на фононную теплопроводность кристаллического тела.

3. Портландцемент. Сырье. Основы технологии. Свойства.

БИЛЕТ № 11

1. Типы кристаллических решеток (атомная, молекулярная и пр.). Перечислить. Определение. Величины энергии связи.

2. Теплопроводность некристаллических тел.

3. Разновидности портландцемента (быстротвердеющий, пластифицированный, гидрофобный, сульфатостойкий, белый и цветной). Сырье. Основы технологии. Свойства

БИЛЕТ № 12

1. Кристаллическая структура материалов. Свойства кристаллов. Определение.

2. Теплопроводность гетерогенных систем.

3. Шлакопортландцемент и пуццолановый портландцемент. Сырье. Основы технологии. Свойства

БИЛЕТ № 13

1. Классификация кристаллов по сингонии. Примеры материалов данной классификационной группы.

2. Влияние пористости на теплопроводность твердых тел.

3. Глиноземистый цемент. Сырье. Основы технологии. Свойства

БИЛЕТ № 14

1. Идеальные и реальные кристаллы. Дефекты кристаллов.

2. Температура плавления материалов. Основные понятия, термины, определения. Влияния типа химической связи на температуру плавления.

3. Расширяющиеся цементы. Сырье. Основы технологии. Свойства.

БИЛЕТ № 15

1. Аморфная структура материалов. Определение. Основные свойства. Методы получения материалов с аморфной структурой.

2. Механизм плавления. Влияние химического состава и структуры на температуру плавления.

3. Заполнители для бетонов и растворов. Песок и крупные заполнители. Основные свойства. Требования к качеству заполнителей.

БИЛЕТ № 16

1. Аморфно-кристаллическая структура. Определение. Методы получения. Свойства. Примеры.

2. Деформативные свойства материалов. Основные понятия термины, определения. Упругость. Константы упругости. Влияние пористости, типа химических связей на модуль Юнга.

3. Строительные растворы. Общие сведения. Свойства растворных смесей и затвердевших растворов. Пластификаторы.

БИЛЕТ № 17

1. Макроструктура материалов. Особенности строения поверхностных слоев. Влияние примесей и смачивания на энергию связи поверхностных слоев.

2. Пластичность. Механизм пластических деформаций.

3. Растворы для кладки и штукатурок.

БИЛЕТ № 18

1. Макроструктура материалов. Особенности строения внутренних слоев. Расшифровать понятия «оптимальная» и «неоптимальная» структуры.

2. Хрупкость и эластичность. Определение. Механизм образования хрупкости и эластических деформаций.

3. Бетоны. Общие сведения. Свойства бетонной смеси. Основной закон прочности тяжелого бетона.

БИЛЕТ № 19

1. Пористость. Определение. Влияние пористости на морозостойкость, прочностные и теплофизические свойства материалов.

2. Прочность. Определение. Критерии прочности. Прочность идеальных и реальных материалов.

3. Основы технологии бетонов. Прочность, марка и класс бетона. Основные свойства тяжелых бетонов.

БИЛЕТ № 20

1. Макроструктура и гигроскопичность материалов.

2. Влияние факторов на прочность строительных материалов. Элементы теории прочности строительных материалов.

3. Легкие бетоны на пористых заполнителях. Ячеистые бетоны. Основы технологии. Свойства.

БИЛЕТ № 21

1. Макроструктура и газопроницаемость материалов.

2. Твердость материалов. Определение, Методы оценки. Связь между твердостью и прочностью.

3. Железобетон и железобетонные изделия. Монолитный железобетон и сборный железобетон. Особенности технологии. Основные виды сборных железобетонных изделий.

БИЛЕТ № 22

1. Макроструктура и паропроницаемость.

2. Эксплуатационные свойства. Основные понятия, термины и определения. Водостойкость. Морозостойкость.

3. Силикатный кирпич и силикатобетонные изделия. Основы технологии и свойства.

БИЛЕТ № 23

1. Макроструктура и водопроницаемость.

2. Коррозионная стойкость. Определение. Виды коррозии строительных материалов. Факторы, влияющие на коррозионную стойкость. Общие принципы повышения коррозионной стойкости.

3. Бетонные камни и мелкие блоки. Основы технологии и свойства.

Билеты составил к.т.н, доцент кафедры

«Строительные материалы» /В.П. Петров/